Debug Tool for VSE/ESA

User's Guide and Reference

Release 1

SC26-8797-00

Debug Tool for VSE/ESA

User's Guide and Reference

Release 1

SC26-8797-00

— Note!

Before using this information and the product it supports, be sure to read the general information under FNotices’|

First Edition (December 1996)

This edition applies to the Debug Tool feature of the following compilers:
e IBM C for VSE/ESA Version 1, Release 1 (Program Number 5686-A01)
e IBM COBOL for VSE/ESA Version 1, Release 1 (Program Number 5686-068)
¢ IBM PL/I for VSE/ESA Version 1, Release 1 (Program Number 5686-069)
and to any subsequent releases until otherwise indicated in new editions or technical newsletters. Make sure you are using the

correct edition for the level of the product.

Order publications through your IBM representative or the IBM branch office serving your locality. Publications are not stocked at the
address below.

A form for readers' comments is provided at the back of this publication. If the form has been removed, address your comments to:

IBM Corporation, Department W92/H3
P.O. Box 49023

San Jose, CA, 95161-9023

United States of America

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any way it believes
appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 1995, 1996. All rights reserved.
US Government Users Restricted Rights — Use, duplication or disclosure restricted by GSA ADP Schedule Contract with IBM Corp.

Contents

Contents

Notices Xii
Programming Interface Information, Xii
Trademarks L Xii
About This Book xiii
IBM Language Environment for VSE/ESA L. Xiii
Debug Tool Xiv
Who Might Use This Book Xiv
How This Book Is Organized XV
Using Your Documentation XV
How to Read the Syntax Diagrams XVi
Part 1. Getting Started 1
Chapter 1. Before You Begin Debugging 2
Debug Tool Debugging Environments, 2
Planning to Run Your Program with Debug Tool 4
A Sample Interactive Debug Tool Session (COBOL) 5
Chapter 2. Preparing to Debug Your Program 12
Compiling a C Program with the Compile-Time TEST Option 12
Using #pragma to Specify Compile-Time TEST Option 16
Compiling a COBOL Program with the Compile-Time TEST Option 16
Compiling a PL/I Program with the Compile-Time TEST Option 19
Debugging Multilanguage Programs 22
Debugging an Application Fully Supported by LE/VSE 22
Debugging an Application Partially Supported by LE/VSE 23
Compiler Listings (and Program Source) 23
Debug Tool Compiler Print Exit 23
Assigning SYSLST to Disk 26
Chapter 3. Beginning a Debugging Session 27
Files Used By Debug Tool 27
Source and Listing Files 27
Preferences File 29
Commands File 29
Profile Settings File 29
The Log File 30
Determining the Default Userid 30
Specifying Files to Debug Tool 31
Using the Run-Time TEST Option 33
Run-Time TEST Option Syntax 33
Run-Time TEST Option Considerations 37
Run-Time TEST Option Examples 40
Specifying Run-Time TEST Option with #pragma runoptsinC 41
Specifying Run-Time TEST Option with PLIXOPT string in PL/I 41
Invoking Your Program When Starting a Debugging Session 42
Invoking Your Program for a Debugging Session 42
Invoking Debug Tool under CICS 43

© Copyright IBM Corp. 1995, 1996 iii

Contents

Using Alternative Debug Tool Invocation Methods 43
Invoking Debug Tool with CEETEST 43
Invoking Debug Tool with the __ctest() Function 49
Invoking Debug Tool with PLITEST 51

Chapter 4. Debugging Your Programs in Full-Screen Mode 53

Preparing for Debugging 53

Invoking Your Program with Debug Tool 53

Ending a Debug Session 54

Basic Tasks of Debug Tool 54
Debug Tool Interface 54
Help 54
Window Control 54
Setting a Line Breakpoint 56
Stepping through or Running Your Program. 56
Displaying a Variable's Value 56
Continuously Displaying a Variable's Value 56
Settinga PFKey 56
Error Numbers for Messages in the log Window 57
Finding a Renamed Source File Using Debug Tool 57

Using a C Program to Demonstrate a Debug Tool Session 57
CTasks 62

Using a COBOL Program to Demonstrate a Debug Tool Session 67
COBOL Tasks 71

Using a PL/I Program to Demonstrate a Debug Tool Session 76
PLI Tasks 80

Chapter 5. Using the Debug Tool Interfaces 84

Customizing Debug Tool for Your Environment 84
Using the Debug Tool Session Panel 84

Session Panel Windows 85
Source Window |} 86
Monitor Window B 87
LogWindow B 87
Using the Session Log File to Maintain a Record of Your Session 87

Entering Commands in a Debug Tool Session 89
Command Sequencing 90
Using the Command Line 90
Using Prefix Commands 90
Using Cursor Commands 91
Using Program Function (PF) Keys to Enter Commands 91

Defining PF Keys 91
Abbreviating Commands 91
Retrieving Commands 92
Retrieving Lines from the Session Log and Source Windows 92
Creating EQUATES and Using String Substitution 92

Navigating Through Debug Tool Session Panel Windows 93
Moving the Cursor 93
Scrolling the Windows 93
Positioning Lines at the Top of Windows 93
Searching for a Character or Character String 93

Customizing Your Session 94
Changing Session Panel Window Layout 95
Opening and Closing Session Panel Windows 96

iV Debug Tool/’VSE V1R1 User's Guide and Reference

Contents

Sizing Session Panel Windows 96
Intersecting Windows 97
Horizontal Windows 97
Vertical Windows 97
Zooming a Window 97
Customizing Colors 97
Customizing Settings 99
Getting Help During Your Session 102
Chapter 6. Multiple Enclaves 103
Invoking Debug Tool within an Enclave 103
Using the Source Window 104
Retaining a Log File of your Debug Tool Session 104
Processing Commands from a Commands File 104
Using Breakpoints within Multiple Enclaves 104
Ending a Debug Tool Session 104
Using Debug Tool Commands within Multiple Enclaves 104
Chapter 7. Using Debug Tool in Different Modes and Environments . . . 107
Using Debug Tool in BatchMode 107
Debugging CICS Programs 107
Debug Modes under CICS 108
Mechanisms for Invoking Debug Tool under CICS 109
Preparing and Using DTCN to Invoke Debug Tool under CICS 109
Preparing and Using CEEUOPT to Invoke Debug Tool under CICS 114
Preparing and Using Compile-Time Directives To Invoke Debug Tool under
CICS . . e 114
Restrictions When Debugging Under CICS 114
Debugging DL/l Programs 115
Programming Considerations 115
Program Preparation 115
Compile Requirements 115
Link Requirements 116
Using Debug Tool with DL/l Programs 118
BatchMode 118
Interactive Mode 118
Debugging SQL/DS Programs 118
Programming Considerations 119
Program Preparation 119
Preprocessor Requirements o 119
Compile Requirements 119
Link Requirements 120
Using Debug Tool with SQL/DS Programs 120
BatchMode 120
Interactive Mode 121
Part 2. Language-Specific Information 123
Chapter 8. Debug Tool Support of Programming Languages 124
Multiple Enclaves and Interlanguage Communication (ILC) 124
Compatible Attributes Mapped Between HLL Data Types 124
Debug Tool Evaluation of HLL Expressions 125
Debug Tool Interpretation of HLL Variables and Constants 125

Contents V

Contents

Debug Tool Variables (or Intrinsic Functions) 125
Interpretive Subsets 129
Qualifying Variables and Changing the Point of View 129

Qualification 130

Changing the Pointof View 131
Debug Tool Handling of Conditions and Exceptions 131

Condition Handling in Debug Tool 132

Exception Handling within Expressions (C and PL/lonly) 133
Requesting an Attention Interrupt During Interactive Sessions 133
Debug Tool's Built-in Functions 134

For Use with C, COBOL, and PL/I 134

ForUse with Cand PL/l 134

ForUse with PL/l 135
Displaying Environmental Information 135
Low-Level Debugging 136
Chapter 9. Using Debug Tool with C Programs 138
Debug Tool Commands 138
Using C Variables with Debug Tool 138

Accessing Program Variables o L. 138

Displaying Values of C Variables or Expressions 139

Declaring Temporary Variables 139

Assigning Values to C Variables, ... 140
Using Debug Tool Variablesin C 140
C EXPressions 145

Using Debug Tool Functions with C 147
Debug Tool Evaluation of C Expressions 149
Using SET INTERCEPT with C Programs 150
Objects and Scopes L 153

Storage Classes 154
Blocks and Block IdentifiersforC 155
Displaying Environmental Information 156
Using Qualification for C 156

Using Qualifiers 157

Changing the Pointof View 158
Chapter 10. Using Debug Tool with COBOL Programs 160
The Debugging Environment Provided for COBOL Programs 160
Debug Tool Commands 160

Restrictions on COBOL-like Commands 161
Using COBOL Variables with Debug Tool 163

Accessing Program Variables oo 164

Assigning Values to COBOL Variables 164

Declaring Temporary Variables 165

Displaying Values of COBOL Variables 166

Using DBCS Characters 166
Using Debug Tool Variablesin COBOL 167
Debug Tool Evaluation of COBOL Expressions 172

Displaying the Results of Expression Evaluation 173

Using Constants in Expressions 173
Using Debug Tool Functions with COBOL 174

Using %HEX 174

Using the %STORAGE Function 174
Using Qualification for COBOL 174

Vi Debug Tool/VSE V1R1 User's Guide and Reference

Contents

Using Qualifiers 174
Changing the Pointof View 176
Chapter 11. Using Debug Tool with PL/l Programs 177
Debug Tool Commands 177
PL/I Language Statements 177
Using PL/I Variables with Debug Tool 178
Accessing Program Variables o L. 178
Displaying Values of PL/I Variables or Expressions 178
Structures 179
Assigning Values to PL/I Variables 181
Using Debug Tool Variables in PL/L 181
PL/L EXPressions 186
Using DBCS Characters - Freeform Input 186
PL/I Built-In Functions 187
Using SET WARNING Command with Built-lns 187
Using Debug Tool Functions with PL/l 187
Using Qualification for PL/l 189
Using Qualifiers 189
Changing the Pointof View, 191
Part 3. Debug Tool Reference 193
Chapter 12. Using Debug Tool Commands 194
Command Modes and Language Support 194
Entering Commands 194
Command Format 194
Character Setand Case 194
Abbreviating Keywords 195
Continuation (Full-screenmode) 196
Significance of Blanks 197
Comments 198
Constants 198
Retrieving Commands from the Log and Source Windows 199
Online Command Syntax Help 199
Common Syntax Elements 200
Block_ Name 200
Block_Spec 200
Compile_Unit_Name 201
CU_Spec 201
Expression 202
Phase_ Name 202
Load_Spec 203
References 203
Statement_Ild 203
Statement_Ild_Range and Stmt_Id_Spec 204
Statement_Label 205
Chapter 13. Debug Tool Commands 206
ANALYZE Command (PL/l) 206
Assignment Command (PL/I) 207
AT Command 208
Every_ Clause 209

Contents Vi

Contents

AT ALLOCATE (PL/) 210
AT APPEARANCE 211
AT CALL . . . 213
AT CHANGE 215
AT CURSOR (Full-Screen Mode) 218
AT DELETE 219
AT ENTRY/EXIT . . . 220
AT GLOBAL 221
AT LABEL 222
AT LINE 224
AT LOAD . . . 224
AT OCCURRENCE 225
AT PATH . . . 228
AT Prefix (Full-Screen Mode) 229
AT STATEMENT 230
AT TERMINATION 231
BEGIN Command (PL/) 232
block Command (C) 233
break Command (C) 233
CALL Command 234
CALL %DUMP e 235
CALL entry_name (COBOL) 239
CALL procedure 240
CLEAR Command 240
CLEAR Prefix (Full-Screen Mode) 243
COMMENT Command 244
COMPUTE Command (COBOL) 245
CURSOR Command (Full-Screen Mode) 246
Declarations 246
Language Compatible Attributes 246
Declarations (C) 247
Declarations (COBOL) e 250
DECLARE Command (PL/I) 251
DESCRIBE Command 253
DISABLE Command 255
DISABLE Prefix (Full-Screen Mode) 255
do/while Command (C) 256
DO Command (PL/I) 256
ENABLE Command 259
ENABLE Prefix (Full-Screen Mode) 259
EVALUATE Command (COBOL) 260
Expression Command (C) 261
FIND Command e 262
for Command (C) 263
GO Command 265
GOTO Command 266
GOTO LABEL Command 267
if Command (C) 268
IF Command (COBOL) 269
IF Command (PL/I) 269
IMMEDIATE Command (Full-Screen Mode) 270
INPUT Command (Cand COBOL) 271
LIST Command 272
LIST (blank) 273

viii Debug Tool/VSE V1R1 User's Guide and Reference

Contents

LIST AT . . . 273
LIST CALLS 275
LIST CURSOR (Full-Screen Mode) 276
LIST Expression 276
LIST FREQUENCY 277
LIST LAST . . . 278
LISTLINENUMBERS 279
LISTLINES 279
LISTMONITOR 279
LISTNAMES 279
LISTON (PL/) e 281
LISTPROCEDURES 281
LISTREGISTERS 282
LIST STATEMENT NUMBERS 282
LIST STATEMENTS e 283
LIST STORAGE s 283
MONITOR Command e 284
MOVE Command (COBOL) 286
Null Command 287
ON Command (PL/I) 287
PANEL Command (Full-Screen Mode) 289
PERFORM Command (COBOL) 291
Prefix Commands (Full-Screen Mode) 292
PROCEDURE Command 293
QUERY Command 294
QUERY Prefix (Full-Screen Mode) 297
QUIT Command 297
RETRIEVE Command (Full-Screen Mode) 298
RUN Command e 299
SCROLL Command (Full-Screen Mode) 299
SELECT Command (PL/l) 301
SET Command 302
SET CHANGE 303
SET COLOR (Full-Screen Mode) 304
SET COUNTRY 306
SETDBCS e 306
SET DEFAULT LISTINGS 307
SET DEFAULT SCROLL (Full-Screen Mode) 307
SET DEFAULT WINDOW (Full-Screen Mode) 308
SETECHO 308
SET EQUATE e 309
SET EXECUTE e 310
SET FREQUENCY 310
SET HISTORY 311
SET INTERCEPT (Cand COBOL) 311
SET KEYS (Full-ScreenMode) 313
SETLOG e 313
SET LOG NUMBERS (Full-Screen Mode) 314
SET MONITOR NUMBERS (Full-Screen Mode) 314
SETMSGID e 315
SET NATIONAL LANGUAGE 315
SET PACE 316
SET PFKEY 316
SET PROGRAMMING LANGUAGE 317

Contents iX

Contents

SET QUALIFY 318
SET REFRESH (Full-Screen Mode) 320
SET REWRITE 320
SET SCREEN (Full-ScreenMode) 321
SET SCROLL DISPLAY (Full-Screen Mode) 321
SET SOURCE e 322
SET SUFFIX (Full-Screen Mode) 323
SET TEST e 323
SET WARNING (Cand PL/l), 325
SET Command (COBOL) i 326
SHOW Prefix Command (Full-Screen Mode) 326
STEP Command 327
switch Command (C) 328
TRIGGER Command 331
USE Command 333
while Command (C) 335
WINDOW Command (Full-Screen Mode) 335
WINDOW CLOSE e 336
WINDOW OPEN 336
WINDOW SIZE 337
WINDOW ZOOM e 338
Part 4. Appendixes 341
Appendix A. Coexistence 342
Coexistence with Other Debug Tools 342
Coexistence with Unsupported HLL Modules 342
Appendix B. Using Debug Tool in a Production Mode 343
Fine-Tuning Your Programs with Debug Tool 343
Removing Hooks, Statement Tables, and Symbol Tables 343
Using Debug Tool on Optimized Programs 344
Appendix C. Using C Reference Information with Debug Tool 346
Debug Tool Interpretive Subset of C Commands 346
C Reserved Keywords 346
Operators and Operands 346
LE/VSE Conditions and Their C Equivalents 347
Appendix D. Using COBOL Reference Information with Debug Tool . . . 349
Debug Tool Interpretive Subset of COBOL Commands 349
COBOL Reserved Keywords 349
Allowable Comparisons for the Debug Tool IF Command 349
Allowable Moves for the Debug Tool MOVE Command 351
Allowable Moves for the Debug Tool SET Command 352
Appendix E. Using PL/lI Reference Information with Debug Tool 353
Debug Tool Interpretive Subset of PL/I Commands 353
PL/I Reserved Keywords 353
Conditions and Condition Handling 353
Unsupported PL/I Language Elements 354
Appendix F. Debug Tool Messages 355

X Debug Tool/VSE V1R1 User's Guide and Reference

Contents

Bibliography 391
Debug Tool Publications 391
Language Environment Publications 391
LE/VSE-Conforming Language Product Publications 391
Related Publications 391
Softcopy Publications 392
Glossary 393
Index 399

Contents XI

Notices

Notices

References in this publication to IBM products, programs, or services do not imply
that IBM intends to make these available in all countries in which IBM operates.
Any reference to an IBM product, program, or service is not intended to state or
imply that only that IBM product, program, or service may be used. Subject to
IBM's valid intellectual property or other legally protectable rights, any functionally
equivalent product, program, or service may be used instead of the IBM product,
program, or service. The evaluation and verification of operation in conjunction with
other products, except those expressly designated by IBM, are the responsibility of
the user.

IBM may have patents or pending patent applications covering subject matter in
this document. The furnishing of this document does not give you any license to
these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation

500 Columbus Avenue
Thornwood, NY 10594
U.S.A.

Programming Interface Information

This book is intended to help with application programming. This book documents
General-Use Programming Interface and Associated Guidance Information provided
by Debug Tool for VSE/ESA.

General-Use programming interfaces allow the customer to write programs that
obtain the services of Debug Tool for VSE/ESA.

Trademarks

The following terms are trademarks of the IBM Corporation in the United States or
other countries or both:

CICS System/370
IBM System/390
Language Environment VSE/ESA
SQL/DS VTAM

Xii Debug Tool/VSE V1R1 User's Guide and Reference

About This Book

About This Book

Debug Tool for VSE/ESA (referred to throughout this book as Debug Tool)
combines the richness of the System/370 and System/390 environments with the
power of IBM Language Environment for VSE/ESA (LE/VSE) to provide a debug
tool for programmers to isolate and fix their program bugs and test their
applications. Debug Tool gives you the capability of testing programs in batch or
using a nonprogrammable terminal in full-screen mode to debug your programs
interactively.

This book contains instructions and examples to help you use Debug Tool to debug
C, COBOL, and PL/I applications running with LE/VSE. Topics covered include
preparing your application for debugging, accomplishing basic debugging tasks, and
Debug Tool’s interaction with different programming languages. A complete
command reference section is also included.
You can begin testing with Debug Tool after learning just a few concepts:

e How to invoke it

* How to set, display, and remove breakpoints

e How to step through your program

Debug Tool commands are similar to commands from the supported high-level
languages (HLLs).

IBM Language Environment for VSE/ESA

Debug Tool can be used to debug application programs written in high-level
languages that use the run-time environment and library of run-time callable
services provided by LE/VSE.

LE/VSE establishes a common run-time environment and common run-time callable
services for language products, user programs, and other products.

The common execution environment is made up of data items and services
performed by library routines available to a particular application running in the
environment. The services that LE/VSE provides to your application include:

e Services that satisfy basic requirements common to most applications. These
include support for the initialization and termination of applications, allocation of
storage, support for interlanguage communication (ILC) and condition handling.

» Extended services often needed by applications. These functions are
contained within a library of callable routines, and include interfaces to
operating system functions and a variety of other commonly used functions.

¢ Run-time options that help the execution, performance tuning, performance,
and diagnosis of your application.

» Access to language-specific library routines.

© Copyright IBM Corp. 1995, 1996 Xiii

About This Book

Debug Tool

Debug Tool is distributed as part of the Full Function offering of the following IBM
high-level language compilers:

e IBM C for VSE/ESA
e IBM COBOL for VSE/ESA
e IBM PL/I for VSE/ESA
Debug Tool is a powerful interactive source-level debug tool for application

programs written in the above high-level languages. It allows programmers to
address difficult problems at the source level where they are comfortable.

While a program is running, programmers can control and examine its execution
with functions such as:

¢ Viewing the source listing and stepping through the source one statement at a
time

e Setting dynamic break points, which can be simple or conditional based on
other values in the program

e Monitoring the value of program variables
» Modifying program and variable storage
» Debugging mixed-language applications from a single debug session
The debug session can be recorded in a log file, so the programmer can replay the

session. Programmers can use Debug Tool to help capture test cases for future
program validation or to further isolate a problem within an application.

Who Might Use This Book

This book is intended for application programmers using Debug Tool to debug
high-level languages with LE/VSE under VSE/ESA. Throughout this book, these
languages are referred to as C, COBOL, and PL/I.
The following environments are supported:

e Batch

e Customer Information Control System (CICS)

e Data Language/l (DL/I)

e Structured Query Language/Data System (SQL/DS)

Note: To use this book and debug a program written in one of the supported
languages, you need to know how to write, compile, and run such a
program.

XiV Debug Tool/VSE V1R1 User's Guide and Reference

About This Book

How This Book Is Organized

Part 1 introduces you to Debug Tool. The first three chapters discuss the
preparatory work you must complete before using it. Chapter 4 discusses
accomplishing basic tasks with Debug Tool in full-screen mode by providing
scenarios that help you begin using Debug Tool, including helpful hints when
performing some basic debugging tasks. The last three chapters discuss how to
debug programs that contain applications written in more than one HLL and
information about using Debug Tool in a variety of environments, including batch
mode and CICS. Also covered are debugging applications that contain SQL/DS
statements and calls to DL/I.

Part 2 discusses Debug Tool's interaction with different programming languages.
Debug Tool variables, functions, and expression evaluation are explained.
Separate chapters provide more details on using Debug Tool with C, COBOL, and
PLI/I

Part 3 is the Command Reference section. This section describes all of the Debug
Tool commands, shows their syntax, and provides examples of their use.

Part 4 contains the appendixes. These include: a discussion of the coexistence of
Debug Tool with HLL phases compiled with previous versions of compilers;
information on how to optimize your programs while still retaining some debugging
capability; tables of reference material for use with C, COBOL, and PL/I (for
example, reserved keywords and Debug Tool interpretive subsets of HLL
commands); and a complete list of Debug Tool messages.

Following the appendixes are a bibliography and a glossary of terms.

Using Your Documentation
The publications provided with Debug Tool and LE/VSE are designed to help you:
e Plan for, install, customize, and maintain Debug Tool.
e Debug problems in your LE/VSE-conforming applications.
Language programming information is provided in the high-level language

programming manuals that provide language definition, library function syntax and
semantics, and programming guidance information.

Each publication helps you perform a different task. For a complete list of
publications you might need, see [‘Bibliography” on page 391|.

About This Book XV

About This Book

Table 1. How to Use Debug Tool, LE/VSE and Language Publications

To... Use...
Evaluate Debug Tool Debug Tool for VSE/ESA Fact GC26-8925
Sheet
Plan for, install, customize, and Debug Tool for VSE/ESA SC26-8798
maintain Debug Tool Installation and Customization
Guide
Use Debug Tool to debug Debug Tool for VSE/ESA User's SC26-8797
LE/VSE-conforming applications Guide and Reference
Debug your LE/VSE-conforming LE/VSE Debugging Guide and SC33-6681
application and get details on Run-Time Messages
run-time messages
Diagnose problems that occur in LE/VSE Debugging Guide and SC33-6681
your LE/VSE-conforming application Run-Time Messages
Understand the LE/VSE program LE/VSE Concepts Guide GC33-6680
models and concepts LE/VSE Programming Guide SC33-6684

Diagnose compiler problems that
occur in your LE/VSE-conforming
application

Your compiler Diagnosis Guide

How to Read the Syntax Diagrams

The following rules apply to the syntax diagrams used in this book:

Arrow symbols

Read the syntax diagrams from left to right, from top to bottom, following the

path of the line.

> Indicates the beginning of a statement.

— Indicates that the statement syntax is continued on the next line.
-— Indicates that a statement is continued from the previous line.
—>< Indicates the end of a statement.

Diagrams of syntactical units other than complete statements start with the
»— symbol and end with the — symbol.

Conventions

* Keywords, their allowable synonyms, and reserved parameters, appear in

uppercase. These items must be entered exactly as shown.

e Variables appear in lowercase italics (for example, column-name). They
represent user-defined parameters or suboptions.

¢ When entering commands, separate parameters and keywords by at least
one blank if there is no intervening punctuation.

¢ Enter punctuation marks (slashes, commas, periods, parentheses,

quotation marks, equal signs) and numbers exactly as given.

¢ Footnotes are shown by a number in parentheses, for example, (1).

XVi Debug Tool/VSE V1R1 User's Guide and Reference

About This Book

Syntax Fragments

If a syntax diagram contains too many items to fit in the diagram, the syntax is
shown by a main syntax diagram and one or more syntax fragments.

A syntax fragment is referred to in the main diagram by its fragment name
between two vertical bars.

»—| syntax_fragment |

\ 4
A

Each syntax fragment appears below the main syntax diagram, and is
delimited by vertical bars. A heading above the fragment indicates the name
of the fragment.

syntax_fragment:
—REQUIRED_ITEM |

Read each syntax fragment as though it were imbedded in the main syntax
diagram.

Required items

Required items appear on the horizontal line (the main path).
»>—REQUIRED_ITEM

A\
A

Optional Items

Optional items appear below the main path.

»»>—REQUIRED_ITEM
|—optz’onal_item—‘

A\
A

If an optional item appears above the main path, that item has no effect on the
execution of the statement and is used only for readability.

optional_ite
»»—REQUIRED_ITEM [m—|

A\
A

Multiple required or optional items

If you can choose from two or more items, they appear vertically in a stack. If
you must choose one of the items, one item of the stack appears on the main
path.

\ 4
A

»»—REQUIRED_I TEM—Erequi red_choicel
required_choi ce.?J

If choosing one of the items is optional, the entire stack appears below the
main path.

optional_choicel

»»—REQUIRED_ITEM t >«
optional_choice2

Repeatable items

An arrow returning to the left above the main line indicates that an item can be
repeated.

About This Book XVii

About This Book

\4
A

»—REQUIRED_ITEM—LrepeatabZe_i tem |

If the repeat arrow contains a comma, you must separate repeated items with
a comma.

\ 4
A

»»—REQUIRED_ITEM—Y—repeatable_item—

A repeat arrow above a stack indicates that you can specify more than one of
the choices in the stack.

Default keywords

IBM-supplied default keywords appear above the main path, and the remaining
choices are shown below the main path. In the parameter list following the
syntax diagram, the default choices are underlined.

default_choice
»»>—REQUIRED_ITEM E |

v
A

optional_choice:‘
optional_choice

XViii Debug Tool/’VSE V1R1 User's Guide and Reference

Part 1. Getting Started

© Copyright IBM Corp. 1995, 1996 1

Before You Begin Debugging

Chapter 1. Before You Begin Debugging

Debug Tool is a program-testing and analysis aid that helps you examine, monitor,
and control the execution of programs written in C, COBOL, or PL/l running with
LE/VSE under VSE/ESA. Applications can include other languages, but Debug
Tool does not debug those portions of your application.

This chapter provides an overview of the terminology used by the Debug Tool and
some helpful hints you should consider before beginning.

It also provides a sample Debug Tool session to help you understand the features
Debug Tool provides to assist you in debugging your programs.

Debug Tool Debugging Environments

Debug Tool provides several debugging environments. The number of modes of
operation and languages supported by Debug Tool has necessitated that certain
terms and conventions be adopted for use throughout this manual to reduce
possible conflict between references to the different languages.

The terms full-screen mode, and batch mode are used to describe the types of
debugging sessions or interfaces Debug Tool provides. Included in the following
sections are definitions of these terms.

Debug Tool Sessions

Full-Screen Session Debug Tool provides an interactive full-screen interface
on a 3270 device. The full-screen interface is made up
of session panel windows containing information about
your debugging session.

Batch Session Debug Tool commands files provide a mechanism to
predefine a series of Debug Tool commands to be
performed on an executing batch application. Neither
terminal input nor user interaction is available for batch
debugging of an application.

Full-Screen Session Interface
As [Figure 1 on page 3 shows, in a full-screen session Debug Tool provides three
windows:

« A Source window () in which to view your program source or listing

A Log window (), which records commands and other interactions between
Debug Tool, and your program

« A Monitor window ([i]) in which to monitor changes in your program

You can adjust the sizes of the windows with the cursor, and change the relative
locations of the windows by typing your preferences on a template.

2 © Copyright IBM Corp. 1995, 1996

Before You Begin Debugging

COBOL LOCATION: MULTCU :> 75.1
Command ===> Scroll ===> PAGE
MONITOR -=#----l--mctocco?mcmctomeo3mmmmtome oot mbeeot----6 LINE: 1 OF 2

*hkkhrkkkkhrrhrhkrkhrrrxhkrcrxxkrkxx [OP OF MONITOR #****kxkhkkkrhhrhrrkhrhhrkhrrkhrhhrds
0001 1 01 MULTCU:>PROGRAM-USHORT-BIN 00000 H
0002 2 01 MULTCU:>PROGRAM-SSHORT-BIN +00000

*kkhkkhkhkkhxkkrkhxkkxkkxrxkk*x* BOTTOM OF MONITOR *****xkkkkhkkkkhkkhkhkkhrhhkhdk

SOURCE: MULTCU ---1---=#====2--cotem=3mmmmtocm-boooctoo=-5-———+ LINE: 66 OF 85

70 PROCEDURE DIVISION.
7]_ *hkhkkkkhkhhhhkhhhhhhhdhdhhdhhhhhhhhhhhhhhhdhdhhhddddddrrrrrhrrxxx |
72 * THIS IS THE MAIN PROGRAM AREA. This program only displays

73 * text. .
74 B o o o o o o o R o o o o o R R R R R Rk ok ok ok ok ok ok ok o
75 DISPLAY "MULTCU COBOL SOURCE STARTED." UPON CONSOLE.

76 MOVE 25 TO PROGRAM-USHORT-BIN.

77 MOVE -25 TO PROGRAM-SSHORT-BIN.

78 PERFORM TEST-900.

79 PERFORM TEST-1000.

80 DISPLAY "MULTCU COBOL SOURCE ENDED." UPON CONSOLE.

LOG 0---=t----l--cot--o-2emmotooo-3moomtooonfeo 45— ——+----6 LINE: 6 OF 14
0007 MONITOR

0008 LIST PROGRAM-USHORT-BIN ;

0009 MONITOR

0010 LIST PROGRAM-SSHORT-BIN ;

0011 AT 75 ;

0012 AT 77

0013 AT 79 ;

0014 GO ;

Figure 1. The Debug Tool Windows

For an explanation of all the windows, see [Chapter 5, “Using the Debug Tool|
[Interfaces” on page 84

Denoting Environmental Differences

Certain aspects of Debug Tool usage can differ depending on the environment in
which it is executing. Within this manual when explanations on these differences
occur, the differences are marked in the text in the following fashion:

| For CICS Only

CICS-specific information.

| End of For CICS Only

Special language-specific information about accomplishing a task or using a
particular procedure might also be marked the same way. More extensive
differences are usually discussed in separate sections.

Terminology

Because of differing terminology among the various languages supported by Debug

Tool, a group of common terms has been established. [Table 2 on page 4 lists
these terms and their equivalent in each language.

Chapter 1. Before You Begin Debugging

3

Before You Begin Debugging

Table 2. Terminology

Debug Tool C Equivalent COBOL Equivalent PL/I Equivalent
Term
Compile Unit C source file Program Program
Block Function or Program, Nested Block
Compound Program or
Statement PERFORM Group of
Statements
Label Label Paragraph Name or Label

Section Name

Planning to Run Your Program with Debug Tool

Before you can test your program using Debug Tool, you need to plan how you
want to conduct your debugging session.

e Do you want to compile your program with hooks?

Hooks are instructions inserted in a program by a compiler at compile time.
Using hooks, you can set breakpoints that instruct Debug Tool to gain control
at selected points during program execution.

You can choose where to place the hooks. For example, you can place them
at statements, or only at entry to and exit from blocks.

For more information on placing hooks, see [Chapter 2, “Preparing to Debug|

[Your Program” on page 12|

e Do you want to be able to reference variables during your Debug Tool session?

If yes, you need to instruct the compiler to create a symbol table. The symbol
table contains descriptions of variables, their attributes, and their location in
storage. These descriptions are used by Debug Tool when referencing
variables.

For more information on creating symbol tables, see [Chapter 2, “Preparing to|
[Debug Your Program” on page 12|

* Do you want full debugging capability or smaller application size and higher
performance?

Removing hooks, statement tables, or symbol tables can improve your
application's performance and/or decrease its size. See|Appendix B, “Using|
[Debug Tool in a Production Mode” on page 343|for a complete discussion.

e When do you want to start Debug Tool and when do you want it to gain
control?

There are a variety of ways to invoke Debug Tool:

— Using the run-time TEST option—this option gives you the choice of
invoking Debug Tool either prior to the execution of the application, or at
the occurrence of an HLL condition during the execution of your application.
For more information, see|“Using the Run-Time TEST Option” on page 33|

— Using the LE/VSE CEETEST callable service—with CEETEST, you can
invoke Debug Tool directly from any HLL program. For more information,
see [‘Using Alternative Debug Tool Invocation Methods” on page 43

4 Debug Tool/VSE V1R1 User's Guide and Reference

Before You Begin Debugging

— Using the C _ ctest() function—with _ ctest(), you can invoke Debug
Tool directly from a C program. For more information, see
[Alternative Debug Tool Invocation Methods” on page 43|

— Using the PL/I PLITEST built-in subroutine—with PLITEST, you can invoke
Debug Tool directly from a PL/I program. For more information, see [Using]
[Alternative Debug Tool Invocation Methods” on page 43|

After Debug Tool is invoked, it can gain control of your program and suspend
execution to allow you to take such actions as checking the value of a variable
or examining the contents of storage.

e Do you want to use Debug Tool interactively, or in batch mode?

Debug Tool gives you the option of conducting an interactive debugging
session using a terminal with full-screen capabilities. This allows you to debug
your batch as well as CICS applications interactively.

* Do you need to reduce file 1/10?

If the source (for C) and the source listing (for COBOL and PL/I) files are held
as SAM ESDS files or sequential disk files, they should be defined with a
suitable block size to minimize file I/O when using Debug Tool. Debug Tool will
handle block sizes up to 8192 bytes for these types of files.

A Sample Interactive Debug Tool Session (COBOL)

This section provides a sample of a full-screen Debug Tool session to help you
understand the support provided for debugging your programs.

The sample job, EQAWIVC2, is an example of a Debug Tool session for a COBOL
program. This job is provided with Debug Tool to verify installation of the product.
See your Systems Programmer to find where the source of the sample job is
installed on your system. If your programming language is C or PL/I you can
obtain other installation verification jobs in those languages. These are
documented in Debug Tool for VSE/ESA Installation and Customization Guide.

The sample job EQAWIVC2 compiles, link-edits, and runs a COBOL/VSE program,
IVPCOB2, that invokes Debug Tool interactively. Modify the sample job control to
meet your requirements before submitting the job| Figure 2 on page 6| shows an
extract from EQAWIVC2; tailoring requirements for each statement are discussed in
the notes following Figure 2.

Chapter 1. Before You Begin Debugging 5

Before You Begin Debugging

* $$ JOB JNM=EQAWIVC2,CLASS=Z <
// JOB EQAWIVC2 <

*

*

AR WN =

*

*

// LIBDEF *,SEARCH=(lib.userlib,PRD2.PROD,PRD2.SCEEBASE)

// LIBDEF PHASE,CATALOG=lib.userlib

// OPTION CATAL T E
*

* Step 1: Compile IVPCOB2

*

// EXEC IGYCRCTL,SIZE=IGYCRCTL,PARM='EXIT(PRTEXIT(EQALIST))"'
CBL QUOTE TEST NAME

COBOL/VSE program source

/e
* Step 2: Link-Edit IVPCOB2

*

// EXEC LNKEDT

* Step 3: Run the IVP program invoking Debug Tool
for Interactive Debug

= O 00N

/ EXEC IVPCOB2,SIZE=AUTO,PARM='/TEST(,SYSIPT, ,MFI%vtamluid:*)"

Command file Input
Note: Commands conform to COBOL syntax

Set animated execution at 1 command per second
SET PACE 1;
* Set a breakpoint at line 86
AT 86 LIST ("At the breakpoint for Tine", %LINE);
* Start execution of the program
GO;
* Monitor VARBL1. It will appear in the Monitor window
MONITOR LIST VARBLI;
* List the contents of STR1
LIST STR1;
* Step through the next 6 statements to be executed.
* These will run in animated mode
STEP 63
/*
/&
* $$ EOJ

Figure 2. Job Control Extract for EQAWIVC2

Modify the VSE/POWER job control statements for your site.
H WModify the job card as appropriate for your site.

El The statements beginning with an asterisk (*) will appear as comments on the
system console. You may want to modify or remove them (if you replace the
asterisk with /. C, a job control label, these will not appear on the console).

Bl Change lib.userlib to your temporary user sublibrary:

e As invoked in this example, the compiler listing exit EQALIST, supplied
with Debug Tool, writes the compiler listing to sublibrary member
IVPCOB2.LIST in the first sublibrary in the LIBDEF SOURCE search
chain. If you put a sublibrary other than lib.userlib as the first sublibrary in

6 Debug Tool/VSE V1R1 User's Guide and Reference

Before You Begin Debugging

the SOURCE search chain, then this is where the compiler listing exit
writes the compiler listing file.

For more information about EQALIST, see [‘Debug Tool Compiler Print|
[Exit” on page 23

e The phase IVPCOB2 created by the link-edit in step 2 is written to this
sublibrary.

* Debug Tool writes a profile settings file (userid. DTSAFE) to the first
sublibrary in the LIBDEF SOURCE search chain. The DTSAFE member
is used to save the Debug Tool session settings when your debug
session terminates. These settings are used as your defaults for future
debugging sessions.

If you put a sublibrary other than lib.userlib as the first sublibrary in the
SOURCE search chain, then this is where Debug Tool writes the profile
settings file.

The userid of the profile settings file depends on your VSE/ESA system

options. This is described in fDetermining the Default Userid” on page 30|

If necessary, change the sublibrary to match the sublibrary where Debug Tool
and COBOL/VSE are installed (Debug Tool and COBOL/VSE might not be
installed in the same sublibrary).

If necessary, change the sublibrary to match the sublibrary where LE/VSE is
installed.

Any messages produced by EQAWIVC2 will be in your LE/VSE installation
default national language.

If you want messages to be produced in a national language other than your
LE/VSE installation default, you can use the LE/VSE NATLANG run-time
option. To do this, following the slash (/) at the beginning of the options
string, add NATLANG (xxx), followed by a blank, where xxx is the three
character representation of the language you want to use (such as JPN, ENU,
or UEN).

SYSIPT indicates to Debug Tool that the primary commands file for this
session is the system input device. That is, the commands are included in
the job stream (immediately after the EXEC statement).

Other possible options for the primary commands file are a filename, a file-id,
a member of a sublibrary, or no commands file at all. These are explained in
[‘Run-Time TEST Option Syntax” on page 33|

Change the vtamluid in the TEST option to the VTAM LU name of the terminal
where your interactive debug session will run. For example, if your VTAM LU
name is DO800001, change the TEST option to

TEST(,SYSIPT, ,MFI%D0800001:*).

Note: The VTAM LU must not be in session with another application when
Debug Tool attempts to acquire it.

The asterisk (*) indicates to Debug Tool that there is no preferences file for
this session.

Other possible options for the preferences file are a filename, a file-id, a
member of a sublibrary, or the system input device (SYSIPT). These are
explained in [‘Run-Time TEST Option Syntax” on page 33.

Chapter 1. Before You Begin Debugging 7

Before You Begin Debugging

Note: If you have both a primary commands file and a preferences file, the
commands in the preferences file will be executed first. If both files
are specified as SYSIPT, you need to separate the two input streams
by an end of input (/) job control statement.

After you modify the EQAWIVC2 job, submit it. Step 1 compiles the sample
program and uses the print exit EQALIST supplied with Debug Tool to write a
blank-compressed copy of the compiler listing to member IVPCOB2.LIST in the first
sublibrary of the LIBDEF SOURCE search chain (see [in the notes for [Figure 2|
on page 6). In the sample job this is lib.userlib. This member is used during the
interactive debug session to display the Source window.

Step 2 link-edits the phase IVPCOB2, and step 3 invokes IVPCOB2. When the
execution of the program IVPCOB?2 starts, following successful completion of the
link-edit step, an interactive debug session starts on the terminal you designated in
the TEST option at [l]. The Debug Tool commands specified in the primary
commands file (SYSIPT) are then executed before you enter commands
interactively. After the commands in the command file have executed the debug
screen looks like the example shown in Figure 3.

Note: The example screen is for a 32-line display and assumes the default
settings are being used for Debug Tool. If your display has a different
number of lines or is not using the default settings, the display you see will
be slightly different to the example.

COBOL LOCATION: IVPCOB2 :> 92.1
COMMAND ===> SCROLL ===> PAGE
MONITOR ==+=m==lommmtmmmn@mmmtommo3mmmmtommcfomamtomoBbooctoooof LINE: 1 OF 1

kkkkkkkhkk*kkhkxrkhxkkxkxxxrkxkxkxkxx [OP OF MONITOR ***kkkkkkkkkkkhkkhhkhkkhkhkhhkhkkhx

0001 1 VARBL1I 11

hkkkkhrkrrhrrhrhrxhrrkrhkrxxx BOTTOM OF MONITOR #***kkkkkkhrhkhrhhhhrhhrhrrhrhds

SOURCE: IVPCOB2 --1----#--=-2----t----3-oc-toou-foooto---b----+ LINE: 87 OF 96

87 MOVE "BEG" TO STR2

88 MOVE "UP" TO STR3

89 ADD 1 TO VARBL1

90 SUBTRACT 2 FROM VARBL2

91 ADD 1 TO R

92 MOVE "BOT" TO STR1

93 MOVE "END" TO STR2 MOVE "DOW" TO STR3

94 END-PERFORM. .
95 MOVE "DONE" TO STR1. MOVE "END" TO STR2. MOVE "FIN" TO ST .

LOG 0----+----1----+----2----+----3----4----4--—-t-—--5-—-—+----6 LINE: 9 OF 14
0009 %LINE = 86.1

0010 MONITOR

0011 LIST VARBL1 ;

0012 LIST STRI ;

0013 STR1 = 'ONE '

0014 STEP 6 ;

PF 1:? 2:STEP 3:QUIT 4:LIST 5:FIND 6:AT/CLEAR
PF 7:UP 8:DOWN 9:G0 10:Z00M 11:Z00M LOG 12:RETRIEVE

Figure 3. Debug Session Screen for IVPCOB2 after Command File Execution

8 Debug Tool/VSE V1R1 User's Guide and Reference

Before You Begin Debugging

You are now ready to enter commands in your interactive debug session. The
following script leads you through the session. At the command line in your
interactive debug session enter the commands shown following the ===> and press
Enter.

1. The initial Source window is pointing at statement 92 and the value of VARBL1
in the Monitor window is 11. Display the contents of STR1:

===> |ist str1
The Source window remains at statement 92, the Monitor window remains
unchanged, and the Log window shows:

0015 LIST STR1 ;
0016 STR1 = 'TOP '

2. Describe the attributes of STR1:

===> describe attributes str1
The Source window remains at statement 92, the Monitor window remains
unchanged, and the Log window shows:

0017 DESCRIBE ATTRIBUTES STR1 ;
0018 ATTRIBUTES FOR STR1

0019 ITS LENGTH IS 5
0020 ITS ADDRESS IS 00521DE8
0021 77 IVPCOB2:>STR1 X(5) DISP

3. Cause the next statement to be executed:

===> step 1
The Source window moves to statement 93, the Monitor window remains
unchanged, and the Log window shows:

0022 STEP 1 ;

4. Define a temporary variable TEMP, set it to the value of STR1, and display the
contents of TEMP:

==> 77 temp pic x(5)
==> move str1 to temp
=> list temp

The Source window remains at statement 93, the Monitor window remains
unchanged, and the Log window shows:

0023 77 TEMP PIC X(5) ;
0024 MOVE STR1 TO TEMP ;
0025 LIST TEMP ;

0026 TEMP = 'BOT

5. Cause execution to continue until the next breakpoint is encountered:

=== go
The Source window moves to statement 86, the Monitor window remains
unchanged, and the Log window shows:

0027 GO ;
0028 At the breakpoint for line
0029 %LINE = 86.1

Chapter 1. Before You Begin Debugging 9

Before You Begin Debugging

10

6. Clear the breakpoint at line 86, set a breakpoint at exit of the program, and

cause execution to continue:

==> clear at 86
===> at exit * list ("Exiting ",%cu)
==> go

The Source window moves to statement 1, the value of VARBL1 in the Monitor
window changes to 18, and the Log window shows:

0030 CLEAR AT 86 ;

0031 AT EXIT =

0032 LIST ("Exiting ", %CU) ;
0033 GO ;

0034 Exiting

0035 %CU = IVPCOB2

7. Exit Debug Tool:

===> quit
The Source window remains at statement 1, the Log window shows:
0036 QUIT ;

and the Monitor window is replaced with:

COBOL LOCATION: IVPCOB2 EXIT
COMMAND ===> SCROLL ===> PAGE

EE R

DO YOU REALLY WANT TO TERMINATE THIS SESSION? N
ENTER Y FOR YES AND N FOR NO

KAAIRKRAKRKRKRRXRRRkRk R hhhhhhhhhhhhhhhrhdrxxhkxx% khkhkhkhkkkkkkhkkkhhkhhhhhkhhkhkhkhhhhhrhrxxxxx

Overtype the N with Y and press Enter. Your interactive debug session now
terminates and the terminal returns to your default VTAM display.

If successful, the job finishes with return code 2 indicating there were unresolved
weak external references during the link-edit step. This return code is normal and
does not indicate a problem.

Your interactive debug session creates a log on SYSLST that contains the results
of your interactive debug session (Figure 4 on page 11).

Debug Tool/VSE V1R1 User's Guide and Reference

Before You Begin Debugging

% DEBUG TOOL FOR VSE/ESA Version 1 Release 1 Mod 0
* 12/13/96 11:30:29 AM
% (C) COPYRIGHT IBM CORP. 1992, 1996

SET PACE 1 ;
AT 86

LIST ("At the breakpoint for line", %LINE) ;
GO ;

* At the breakpoint for line
* %LINE = 86.1
MONITOR
LIST VARBL1 ;
LIST STR1 ;
* STR1 = 'ONE '
STEP 6
LIST STR1 ;
* STR1 = 'TOP '
DESCRIBE ATTRIBUTES STR1 ;
ATTRIBUTES FOR STR1
ITS LENGTH IS 5
ITS ADDRESS IS 00521DE8
77 IVPCOB2:>STR1 X(5) DISP
STEP 1
77 TEMP PIC X(5) ;
MOVE STR1 TO TEMP ;

* %k X X

LIST TEMP ;
* TEMP = 'BOT '
GO ;

* At the breakpoint for line
* %LINE = 86.1
CLEAR AT 86 ;
AT EXIT =
LIST ("Exiting ", %CU) ;
GO ;
* Exiting
* %CU = IVPCOB2
QUIT ;

*

Figure 4. SYSLST Log Content after Execution of IVPCOB2

Chapter 1. Before You Begin Debugging 11

Compiling a C Program with TEST Option

Chapter 2. Preparing to Debug Your Program

This chapter describes how to prepare your programs for debugging with Debug
Tool. It discusses how to compile your programs using the TEST compile-time
option to furnish Debug Tool with the necessary debugging information.

Information for using the TEST option with each language compiler and debugging
multilanguage programs is discussed separately in the following sections:

e [‘Compiling a C Program with the Compile-Time TEST Option’|

. :“Com iling a COBOL Program with the Compile-Time TEST Option” on
‘Eaée 1@

e [‘Compiling a PL/I Program with the Compile-Time TEST Option” on page 19|

« [‘Debugging Multilanguage Programs” on page 22|

Compiling a C Program with the Compile-Time TEST Option

12

Before testing your C program with Debug Tool, you must compile it with the C
compile-time TEST option. This option causes the compiler to retain information
about your application program that Debug Tool uses.

The TEST suboptions BLOCK, LINE, and PATH define the points where the
compiler inserts program hooks. When you set breakpoints, they are associated
with the hooks which are used to instruct Debug Tool where to gain control of your
program.

The symbol table suboption SYM controls the inclusion of symbol tables into the
object output of the compiler. Debug Tool uses the symbol tables to obtain
information about the variables in the program.

When using the C compile-time TEST option, be aware that:

e The C compile-time TEST option always generates entry and exit hooks for
functions. If you specify TEST, these hooks are generated regardless of the
suboptions you specify with TEST.

e The C compile-time TEST option implicitly specifies the GONUMBER option,
which causes the compiler to generate line number tables corresponding to the
input source file. You can explicitly remove this option by specifying
NOGONUMBER.

e Programs compiled with both the TEST and OPT options do not have line
hooks, block hooks, path hooks, or a symbol table generated, regardless of the
TEST suboptions specified. Only function entry and exit hooks are generated
for optimized programs.

* You can specify any number of TEST suboptions, including conflicting
suboptions (for example, both PATH and NOPATH). The last suboptions
specified take effect. For example, if you specify TEST(BLOCK, NOBLOCK,
BLOCK, NOLINE, LINE), what takes effect is TEST(BLOCK, LINE) since
BLOCK and LINE are specified last.

* No duplicate hooks are generated even if two similar TEST suboptions are
specified. For example, if you specify TEST(BLOCK, PATH), the BLOCK

© Copyright IBM Corp. 1995, 1996

Compiling a C Program with TEST Option

suboption causes the generation of entry and exit hooks. The PATH suboption
also causes the generation of entry and exit hooks. However, only one hook is
generated at each entry and exit.

See IBM C for VSE/ESA User's Guide for more information on the compile-time
TEST option.

You can specify any combination of the C TEST suboptions in any order. The
default suboptions are BLOCK, LINE, NOPATH, and SYM.

The syntax for the C compile-time TEST option is:

NOTEST |
> TEST

—BLOCK—

L INE—
NOPATH—
S YM—
(NOBLOCK)
- NOLINE—
- PATH——
—NOSYM—
- ALL——
L NONE——

The compile-time TEST suboptions control the generation of symbol tables and
program hooks Debug Tool needs to debug your program. The choices you make
when compiling your program affect the amount of Debug Tool function available
during your debugging session. When a program is under development, you
should compile the program with TEST(ALL) to get the full capability of Debug Tool.

The following list explains what is produced by each option and suboption and how
Debug Tool uses them when debugging your program:

TEST
Produces debugging information for Debug Tool to use during batch and
interactive debugging. The extent of the information provided depends on
which of the following suboptions are selected.

The following restrictions apply when using TEST:

e The maximum number of lines in a single source file cannot exceed
131,072.

e The maximum number of include files which have executable statements
cannot exceed 1024.

If you do exceed these limits, the results from Debug Tool are undefined. Also,
an LE/VSE dump generated from a program compiled with the TEST option
yields incorrect line numbers and source file information.

NOTEST
Specifies that no debugging information is to be generated. That is, no
statement hooks or path hooks are compiled into your program, no dictionary
tables are created, and Debug Tool does not have access to any symbol
information.

Chapter 2. Preparing to Debug Your Program 13

Compiling a C Program with TEST Option

e You cannot STEP through program statements. You can suspend
execution of the program only at the initialization of the main compile unit.

* You cannot examine or use any program variables.
e You can LIST storage and registers.

e You cannot use the Debug Tool command GOTO.

BLOCK
Inserts only block entry and exit hooks into your program's object output. A
block is any number of data definitions, declarations, or statements
enclosed within a single set of braces. BLOCK also creates entry and exit
hooks for nested blocks. If SYM is enabled, symbol tables are generated
for variables local to these nested blocks.

* You can only gain control at entry and exit of blocks.

e Issuing a command such as STEP causes your program to run, until it
reaches the exit point.

NOBLOCK
Prevents symbol information and entry and exit hooks from being
generated for nested blocks.

LINE
Hooks are generated at most executable statements. Hooks are not
generated for:

 Lines that identify blocks (lines containing braces)
e Null statements
e Labels

e Statements that begin in an #include file.

NOLINE
Suppresses the generation of statement (line number) hooks.

PATH
Hooks are generated at all path points.

e This option does not influence the generation of entry and exit hooks
for nested blocks. The BLOCK suboption must be specified if such
hooks are desired.

e Debug Tool can gain control only at path points and block entry and
exit points. If you attempt to STEP through your program, Debug Tool
gains control only at statements that coincide with path points, giving
the appearance that not all statements are executed.

e The Debug Tool command GOTO is valid only for statements and
labels coinciding with path points.

NOPATH
No path hooks are generated.

SYM
Generates symbol tables in the program's object output that gives Debug
Tool access to variables and other symbol information.

14 Debug Tool/VSE ViR1 User's Guide and Reference

Compiling a C Program with TEST Option

* You can reference all program variables by name, allowing you to
examine them or use them in expressions.

e You can use the Debug Tool command GOTO to branch to a label
(paragraph or section name).

NOSYM
Suppresses the generation of symbol tables. Debug Tool does not have
access to any symbol information.

* You cannot reference program variables by name.

¢ You cannot use commands such as LIST or DESCRIBE to access a
variable or expression.

¢ You cannot use commands such as CALL or GOTO to branch to
another label (paragraph or section name).

ALL
Block and line hooks are inserted and a symbol table is generated. Hooks
are generated at all statements, all path points (if-then -else, calls, and so
on), and at all function entry and exit points.

ALL is equivalent to TEST(LINE, BLOCK, PATH, SYM).
NONE
Generates all compiled-in hooks only at function entry and exit points.

Block and line hooks are not inserted, and the symbol tables are
suppressed.

TEST(NONE) is equivalent to TEST(NOLINE, NOBLOCK, NOPATH,
NOSYM).

Placing Compiled-in Hooks for Functions and Nested Blocks
The following rules apply to the placement of compiled-in hooks for getting in and
out of functions and nested blocks:

e The hook for function entry is placed before any initialization or statements for
the function.

* The hook for function exit is placed just before actual function return.

* The hook for nested block entry is placed before any statements or initialization
for the block.

* The hook for nested block exit is placed after all statements for the block.

Placing Compiled-in Hooks for Statements and Path Points
The following rules apply to the placement of compiled-in hooks for statements and
path points:

e Label hooks are placed before the code and all other statement or path point
hooks for the statement.

* The statement hook is placed before the code and path point hook for the
statement.

* A path point hook for a statement is placed before the code for the statement.

Chapter 2. Preparing to Debug Your Program 15

Compiling a COBOL Program with TEST Option

Using #pragma to Specify Compile-Time TEST Option

The compile-time TEST/NOTEST option can be specified either when you invoke
the compiler or directly in your program, using the #pragma options compiler
directive.

The #pragma directive must appear before any executable code in your program.

Any options specified in the PARM parameter when invoking the compiler override
those specified in the #pragma.

The following example generates symbol table information, symbol information for
nested blocks, and line number hooks:

#pragma options (test(SYM,BLOCK))
This is equivalent to TEST(SYM,BLOCK,LINE,NOPATH). The default LINE means

that the LINE breakpoint will be triggered for a program containing the following
statement:

#pragma options(test)

You can also use a #pragma to specify run-time options. This is explained, with
examples, in [‘Specifying Run-Time TEST Option with #pragma runopts in C” on|

For more information about #pragma options, refer to IBM C for VSE/ESA Language
Reference.

Compiling a COBOL Program with the Compile-Time TEST Option

16

When you compile with the TEST option, the compiler creates the dictionary tables
that Debug Tool uses to obtain information about program variables, and inserts
program hooks at selected points in your program. Your source is not modified.
These points can be at the entrances and exits of blocks, at statement boundaries,
and at points in the program where program flow might change between statement
boundaries (called path points), such as before and after a CALL statement. Using
these hooks, you can set breakpoints to instruct Debug Tool to gain control of your
program at selected points during its execution.

When using the COBOL compile-time TEST option, be aware that:

* If you specify NUMBER with TEST, make sure the sequence fields in your
source code all contain numeric characters.

e Usually, when you specify TEST, the compile-time options NOOPTIMIZE and
OBJECT automatically go into effect, preventing you from debugging optimized
programs. However, TEST(NONE, SYM) does not conflict with OPT, allowing
limited debugging of optimized programs. See [Appendix B, “Using Debug Tooll
lin a Production Mode” on page 343|for more information on debugging
production programs.

e The compile-time TEST option and the run-time DEBUG option are mutually
exclusive, with DEBUG taking precedence. If you specify both the WITH
DEBUGGING MODE clause in your SOURCE-COMPUTER paragraph and the
USE FOR DEBUGGING statement in your code, TEST is deactivated. The
TEST option appears in the list of options, but a diagnostic message is issued
telling you that because of the conflict, TEST is not in effect.

Debug Tool/VSE V1R1 User's Guide and Reference

Compiling a COBOL Program with TEST Option

The syntax for the COBOL compile-time TEST option is:

NOTEST

|—(NONE , SYM)
TEST

L

ALL s SYM)—
BLOCK |—NOS YMJ

NONE

PATH

STMT

Accepted abbreviations are TES and NOTES.

A\
A

The compile-time TEST suboptions control the production of such debugging aids

as dictionary tables and program hooks that Debug Tool needs to debug your
program. The choices you make when compiling your program can affect the

amount of Debug Tool function available during your debugging session. When a
program is under development, you should compile the program with TEST(ALL) to

get the full capability of Debug Tool. The following list explains each option and

suboption and the capabilities of Debug Tool when your program is compiled using

these options.

NOTEST

Specifies that no debugging information is to be generated. That is, no
statement hooks or path hooks are compiled into your program, no dictionary
tables are created, and Debug Tool does not have access to any symbol

information.

e You cannot STEP through program statements. You can suspend

execution of the program only at the initialization of the main compile unit.

* You can include calls to CEETEST in your program to allow you to
suspend program execution and issue Debug Tool commands.

* You cannot examine or use any program variables.

e You can LIST storage and registers.

e The source listing produced by the compiler cannot be used. Therefore, no

listing will be available during a debugging session.

e Because a statement table is not available, you cannot set any statement

breakpoints or use commands such as GOTO or QUERY location.

TEST

Produces debugging information for Debug Tool to use during batch and
interactive debugging. The extent of the information provided depends on

which of the following suboptions are selected.

ALL

Generates all compiled-in hooks, which includes all statement, path, and

program entry and exit hooks.

e You can set breakpoints at all statements and path points, and STEP

through your program.

» Debug Tool can gain control of the program at all statements, path
points, labels, and block entry and exit points, allowing you to enter

Debug Tool commands.

Chapter 2. Preparing to Debug Your Program

17

Compiling a COBOL Program with TEST Option

e Branching to statements and labels using the Debug Tool command
GOTO is allowed.

BLOCK
Hooks are inserted at all block entry and exit points.

e Debug Tool gains control at entry and exit of your program, nested
programs, and PERFORM group of statements.

e Debug Tool can still be explicitly invoked at any point with a call to
CEETEST.

 Issuing a command such as STEP causes your program to run until it
reaches the next entry or exit point.

¢ GOTO can be used to branch to statements that coincide with block
entry and exit points.

NONE
No hooks are inserted in the program.

e The GOTO command is valid for some statements and labels
coinciding with path points.

e A call to CEETEST can still be used at any point to invoke Debug Tool.

PATH
Hooks are inserted at all path points.

e Debug Tool can gain control only at path points and block entry and
exit points. If you attempt to STEP through your program, Debug Tool
gains control only at statements that coincide with path points, giving
the appearance that not all statements are executed.

e A call to CEETEST can still be used at any point to invoke Debug Tool.

e The Debug Tool command GOTO is valid for all statements and labels
coinciding with path points.

STMT
Hooks are inserted at every statement and label, and at all entry and exit
points.

e You can set breakpoints at all statements and STEP through your
program.

e Debug Tool cannot gain control at path points unless they are also at
statement boundaries.

e Branching to all statements and labels using the Debug Tool command
GOTO is allowed.

SYM
Generates dictionary tables in the program's object output (including the
symbol table), that gives Debug Tool access to variables and other symbol
information.

* You can reference all program variables by name, which allows you to
examine them or use them in expressions.

e SYM is required to support labels (paragraph or section names) as
GOTO targets.

18 Debug Tool/VSE V1R1 User's Guide and Reference

Compiling a PL/I Program with TEST Option

NOSYM
Suppresses the generation of dictionary tables. Debug Tool does not have
access to any symbol information.

* You cannot reference program variables by name.

¢ You cannot use commands such as LIST or DESCRIBE to access a
variable or expression.

¢ You cannot use commands such as CALL or GOTO to branch to
another label (paragraph or section name).

Specifying TEST with no suboptions is equivalent to TEST(ALL, SYM).

See IBM COBOL for VSE/ESA Programming Guide for more information about the
compile-time TEST option.

Note: To be able to view your source code while debugging in interactive mode,
you must direct the listing to a nontemporary file that is available during the
debugging session. [‘Compiler Listings (and Program Source)” on page 23|
describes how to make the listing file available for Debug Tool.

Compiling a PL/l Program with the Compile-Time TEST Option

The PL/I compiler provides support for Debug Tool under control of the TEST
option and its hook location and symbol table suboptions. The hook location
suboptions (BLOCK, STMT, PATH, ALL, and NONE) define the points at which the
compiler inserts hooks. These program hooks allow Debug Tool to gain control at
select points in a program during execution. The symbol table suboptions (SYM or
NOSYM) controls the insertion of symbol tables into the program. Debug Tool uses
the symbol tables to obtain information about program variables.

The syntax for the PL/I compile-time TEST option is:

NOTEST
|—(NONE, SYM)
(

ALL ,—SYM)
BLOCK L nosym

NONE

PATH

STMT

A\
A

Accepted abbreviations are TES and NOTES.

The choices you make when compiling your program can affect the amount of
Debug Tool function available during your debugging session. When a program is
under development, you should compile the program with TEST(ALL) to get the full
capability of the Debug Tool. The following list explains each option and suboption
and the capabilities of Debug Tool when your program is compiled using these
options.

NOTEST
Specifies that no debugging information is to be generated. That is, no
statement hooks or path hooks are compiled into your program, no symbol

Chapter 2. Preparing to Debug Your Program 19

Compiling a PL/I Program with TEST Option

20

tables are created, and Debug Tool does not have access to any symbol
information.

e You can LIST storage and registers.

e You can include calls to PLITEST or CEETEST in your program to allow
you to suspend program execution and issue Debug Tool commands.

e You cannot STEP through program statements. You can suspend
execution of the program only at the initialization of the main compile unit.

¢ You cannot examine or use any program variables.

» Because statement hooks are not available, you cannot set any statement
breakpoints or use commands such as GOTO or QUERY location. A
statement table is available if compiled with STMT or GOSTMT.

TEST

Produces debugging information for Debug Tool to use during batch and
interactive debugging. The extent of the information provided depends on
which of the following suboptions are selected.

ALL
Generates all compiled-in hooks, which includes all statement, path, and
program entry and exit hooks.

e You can set breakpoints at all statements and path points, and STEP
through your program.

e Debug Tool can gain control of the program at all statements, path
points, labels, and block entry and exit points, allowing you to enter
Debug Tool commands.

e Enables branching to statements and labels using the Debug Tool
command GOTO.

BLOCK
Hooks are inserted at all block entry and exit points.

e Enables Debug Tool to gain control at block boundaries - block entry
and block exit.

* You can gain control only at entry and exit of your program and all
entry and exit points of internal program blocks.

e A call to PLITEST or CEETEST can still be used to invoke Debug Tool
at any point in your program.

 Issuing a command such as STEP causes your program to run until it
reaches the next block entry or exit point.

¢ Block hooks are not inserted into a NULL ON-unit or an ON-unit
consisting of a single GOTO statement.

NONE
No hooks are inserted in the program.

e A call to PLITEST or CEETEST can still be used to invoke Debug Tool
at any point in your program.

Debug Tool/VSE V1R1 User's Guide and Reference

Compiling a PL/I Program with TEST Option

PATH
Causes hooks to be inserted:

e Before the THEN part of an IF statement.

e Before the ELSE part of an IF statement.

» Before the first statement of all WHEN clauses of a SELECT-group.
e Before the OTHERWISE statement of a SELECT-group.

e At the end of a repetitive DO statement, just before the Do-group is to
be executed.

e At every CALL or function reference - both before and after control is
passed to the routine.

» Before the statement following a user label, excluding labeled FORMAT
statements. If a statement has multiple labels, only one hook is
inserted.

Specifying PATH also causes BLOCK hooks to be inserted.

STMT
Hooks are inserted before most executable statements and labels. STMT
also causes BLOCK hooks to be inserted.

e You can set breakpoints at all statements and STEP through your
program.

e Debug Tool cannot gain control at path points unless they are also at
statement boundaries.

e Branching to all statements and labels using the Debug Tool command
GOTO is allowed.

SYM
Generates a symbol table to be compiled into the program. The symbol
table is required for examining program variables or program control
constants by name.

* You can reference all program variables by name, which allows you to
examine them or use them in expressions.

e SYM is required to support labels as GOTO targets.

NOSYM
Suppresses the generation of a symbol table. Debug Tool does not have
access to any symbol information.

e You cannot reference program variables by name.

¢ You cannot use commands such as LIST or DESCRIBE to access a
variable or expression.

¢ You cannot use commands such as CALL or GOTO to branch to
another label (procedure or block name).

See IBM PL/I for VSE/ESA Programming Guide for more information about the
compile-time TEST option.

Compiling with TEST(STMT), TEST(PATH), or TEST(ALL) also causes a statement
number table to be generated. If the compile-time STMT option is in effect, TEST

Chapter 2. Preparing to Debug Your Program 21

Debugging Multilanguage Programs

causes GOSTMT to apply. If the compile-time NUMBER option is in effect, TEST
causes GONUMBER to apply.

Note: To be able to view your source code while debugging in interactive mode,
PL/I programs must be compiled using the PL/ SOURCE compile-time
option. You must also direct the listing to a nontemporary file that is
available during the debugging session. [‘Compiler Listings (and Program|
[Source)” on page 23 describes how to make the listing file available for
Debug Tool.

Debugging Multilanguage Programs

This section discusses strategies you can employ when debugging programs
written in more than one language.

The process of debugging multilanguage programs is simplified by the introduction
of LE/VSE. LE/VSE supports the creation of application programs written in more
than one HLL by providing a single environment to run such programs using
interlanguage communication (ILC).

When the need to debug a multilanguage program arises, you can find yourself
facing one of the following scenarios:

e You need to debug an application written in more than one language, where
each language is supported by LE/VSE.

e You need to debug an application written in more than one language, where
not all of the languages are supported by LE/VSE.

When writing a multilanguage application, a number of special considerations arise
because you must work outside the scope of any single language. The LE/VSE
initialization process establishes an environment tailored to the set of HLLs
constituting the main phase of your application program. This removes the need to
make explicit calls to manipulate the environment. Also, termination of the LE/VSE
environment is accomplished in an orderly fashion, regardless of the mixture of
HLLs present in the application.

Debugging an Application Fully Supported by LE/VSE

22

If you are debugging an application written in a combination of languages
supported by LE/VSE and compiled by supported compilers, very little is required in
the way of special actions. Debug Tool normally recognizes a change in
programming languages and automatically switches to the correct language when a
breakpoint is reached. If desired, you can use the SET PROGRAMMING
LANGUAGE command to stay in the language you specify; however, you can only
access variables defined in the currently set programming language. For details,
see|“SET PROGRAMMING LANGUAGE” on page 317|

When defining session variables you want to access from compile units of different
languages, you must define them with compatible attributes['Language Compatible]
[Attributes” on page 246| contains a table showing compatible attributes for variables
declared in the supported languages.

For more information on creating multilanguage applications, see LE/VSE Writing
Interlanguage Communication Applications.

Debug Tool/VSE V1R1 User's Guide and Reference

Compiler Listings and Program Source

Debugging an Application Partially Supported by LE/VSE
Sometimes you might find yourself debugging applications that contain compile
units written in languages not supported by either Debug Tool or LE/VSE. For
example, you can run programs containing mixtures of Assembler, C, COBOL,
FORTRAN, and PL/I source code with the Debug Tool. You can invoke Debug
Tool and perform testing only for the sections of a multilanguage program written in
a supported language and compiled with an LE/VSE-enabled compiler, or
relink-edited to take advantage of LE/VSE library routines. If you are debugging a
compile unit written in a supported language and the compile unit calls another
unsupported language, a breakpoint set with AT CALL is triggered. Debug Tool
can determine the name of the compile unit, but little else. Your compile unit runs
unhindered by Debug Tool. When program execution returns to a compile unit of a
known HLL, Debug Tool can once again gain control and execute commands.

Compiler Listings (and Program Source)

In order for you to view the program you are debugging, Debug Tool must have
access to a file containing the program source statements. For C, Debug Tool
must have access to the program source. For COBOL or PL/I, Debug Tool must
have access to the listing generated by the compiler.

The following sections describe two ways in which you can store COBOL and PL/I
compiler listings so Debug Tool can access them.

Debug Tool Compiler Print Exit
Debug Tool supplies the compiler print exit program EQALIST to assist you in
storing the compiler listing for your COBOL and PL/I programs to disk files.
EQALIST is invoked by using the COBOL or PL/I EXIT compile-time option, as
follows:

// EXEC compiler,SIZE=compiler, X
PARM="'EXIT(PRTEXIT([''parameter'' ,JEQALIST))"

The syntax of the EXIT compile-time option to invoke EQALIST is:

\4
A

»>—EXIT(PRTEXIT(EQALIST))

L '—| parameter |—",J

parameter:

(member_name) |
lib.sublib
L (member_name) J

VSAM
|—(VSAM_cuname) i

The parameter passed to EQALIST indicates the type of file the compiler listing will
be written to.

Note: As well as writing the listing to the file indicated, EQALIST will output it to
SYSLST.

Chapter 2. Preparing to Debug Your Program 23

Compiler Listings and Program Source

24

The following types of parameter can be passed to EQALIST:
(none)

If no parameter is passed to EQALIST, the compiler listing is written to a
sublibrary member. The name of this member has the form cuname.LIST,
where cuname is the name of the compile unit. This corresponds to the default
sublibrary member name that Debug Tool searches for to obtain the source
listing for cuname. The listing is written to the first sublibrary in the SOURCE
search chain (specified using the LIBDEF JCL statement). If the member
already exists, it will be overwritten.

The following is an example of invoking the PL/I compiler with the Debug Tool
print exit to write the compiler source listing to a member in the first sublibrary
in the SOURCE search chain:

// LIBDEF SOURCE,SEARCH=(LIB.SUBLIB,...)

// EXEC IEL1AA,SIZE=IEL1AA,PARM='EXIT(PRTEXIT(EQALIST))"

*PROCESS TEST(ALL);
PLISAMP: PROC OPTIONS(MAIN);

The name of the member will be PLISAMP.LIST in the sublibrary LIB.SUBLIB.

member_name

If a parameter in the form (member_name) is passed to EQALIST, the compiler
listing is written to a sublibrary member. The name of this member has the
form member_name.LIST. The listing is written to the first sublibrary in the
SOURCE search chain (specified using the LIBDEF JCL statement). For
example, to write a PL/I compiler source listing to the member MYNAME.LIST
in the first sublibrary in the SOURCE search chain, you would use the following
statement to invoke the compiler:

// EXEC IEL1AA,SIZE=IEL1AA,PARM='EXIT(PRTEXIT(''(MYNAME)'',EQALIST))"

lib.sublib

If a parameter of the form lib.sublib is passed to EQALIST, the compiler listing
is written to the sublibrary lib.sublib. The member name has the form
cuname.LIST, where cuname is the name of the compile unit.

The following is an example of invoking the COBOL compiler with the Debug
Tool print exit to write the compiler source listing to a member in the sublibrary
MYLIB.MYSUBLIB:
// EXEC IGYCRCTL,SIZE=IGYCRCTL, X
PARM="'EXIT(PRTEXIT(''MYLIB.MYSUBLIB'',EQALIST))"
CBL TEST(ALL,SYM)

IDENTIFICATION DIVISION.
PROGRAM-ID. COBPROG.

The name of the member will be COBPROG.LIST.

member_name
You can also specify the compile unit part of the sublibrary member name
by including the preferred name in parentheses as part of the print exit
parameter. For example, to write a PL/I compiler source listing to the
member MYNAME.LIST in the sublibrary MYLIB.MYSUBLIB, you would use
the following statement:

// EXEC IEL1AA,SIZE=IEL1AA, X
PARM="EXIT(PRTEXIT(''MYLIB.MYSUBLIB(MYNAME)'',EQALIST))"'

Debug Tool/VSE V1R1 User's Guide and Reference

Compiler Listings and Program Source

VSAM
If the parameter VSAM is passed to EQALIST, the compiler listing is written to
a SAM ESDS file in VSAM-managed space. The file-id of this file has the form
DTVSE.cuname.LIST, where cuname is the name of the compile unit. If the
filename of a VSAM user catalog is specified in the CAT parameter of the
DLBL job control statement, the file will be cataloged in the specified VSAM
user catalog. If the CAT parameter is not specified, the file will be cataloged in
the job catalog (the VSAM catalog specified in the label information for
IJSYSUC) or, if no job catalog is available, the VSAM master catalog. If the file
already exists, it will be overwritten.

The following is an example of invoking the COBOL compiler with the Debug
Tool print exit to write the compiler source listing to a SAM ESDS file:

// EXEC IGYCRCTL,SIZE=IGYCRCTL,PARM='EXIT(PRTEXIT("''VSAM'',EQALIST))'

CBL TEST(ALL,SYM)

IDENTIFICATION DIVISION.
PROGRAM-ID. COBMAIN.

The name of the VSAM file will be DTVSE.COBMAIN.LIST.

VSAM_cuname
You can also specify the compile unit part of the file-id by including the
preferred name in parentheses as part of the print exit parameter. For
example, to write a PL/I compiler source listing to the file-id
DTVSE.MYNAME.LIST you would use the following statement to invoke the
compiler:

// EXEC IEL1AA,SIZE=IEL1AA,PARM="EXIT(PRTEXIT(''VSAM(MYNAME)'',6EQALIST))"

| For COBOL Only |

The “batch compile” process in COBOL only produces one open/close call for the
listing file, no matter how many END PROGRAM units there are. Thus, all compiler
listings for the batch compile will be written to a file named after the first compile
unit name.

The use of batch compiles using the EQALIST exit is not recommended, as a
single output file for each compile unit will not be produced.

| End of For COBOL Only |

| For PL/I Only |

EQALIST can automatically generate a name for the PL/I compiler listing file by
using the leftmost statement label of the first PROCEDURE statement in your
source program. However, if you want EQALIST to automatically generate a name
for the listing file, the PROCEDURE statement label must be in the first line of your
program source (after any *PROCESS statement, but before any comments).

Batching multiple compilations (that is, multiple *PROCESS statements) in the one
step with EQALIST active is not supported for storage reasons.

| End of For PL/I Only |

Chapter 2. Preparing to Debug Your Program 25

Compiler Listings and Program Source

Note: EQALIST is an LE/VSE-enabled assembler program which creates an
LE/VSE pre-initialized environment and then invokes the C program
EQALISTC. Consequently the LE/VSE run-time library (including the C
run-time support) must be included in the LIBDEF PHASE search chain
when invoking the compiler with the EQALIST exit.

This will also require a much larger partition size, up to 1.5 MB more, than
may be required for compilation without the print exit.

Assigning SYSLST to Disk

The source listing generated by the COBOL and PL/I compilers can also be saved
on disk by assigning SYSLST to a sequential disk file prior to invoking the compiler.
The file-id specified for the file should be of the form DTVSE.cuname.LIST, where
cuname is the name of the compile unit.

The sequential disk file must be defined in the JCL used to initiate the Debug Tool
full-screen session.

See |“Determining the Default Userid” on page 30| for further details on files

referenced by Debug Tool.

26 Debug Tool/VSE V1R1 User's Guide and Reference

Beginning a Debugging Session

Chapter 3. Beginning a Debugging Session

This chapter explains how to begin a debugging session with Debug Tool. It
describes:

The files used by Debug Tool during a debugging session.

The use and syntax of the run-time TEST option. The run-time TEST option
gives you several alternatives for beginning a debugging session when
specified during the invocation of your program.

How to use the #pragma runopts to specify the run-time TEST option in C
programs.

How to use the PLIXOPT string to specify the run-time TEST option in PL/I
programs.

How to invoke Debug Tool from your program using the LE/VSE callable
service CEETEST, the C function _ ctest(), or the PL/I built-in subroutine
PLITEST.

When Debug Tool is invoked using one of the methods described in this chapter, it
interrupts the execution of your program to allow you to take appropriate actions.
Debug Tool returns control to your program at the point of its interruption as the
result of a GO or STEP command. You can also specify that control return to
some other point in your program with the GOTO or GO BYPASS command. You
can even specify that control be given to another program with the CALL command
or a C function invocation.

If Debug Tool gains control because of a program condition, when control is
returned to the program, the condition is raised in the program unless explicitly
prevented (see GO Command” on page 265).

Files Used By Debug Tool

Debug Tool uses a number of files to assist in the execution of a debugging
session and to record the outcomes of that session.

Source and Listing Files

In order to display the source code for a compile unit in the Source window of a
full-screen debugging session, Debug Tool must have access to a file containing
either the source code or the compiler listing for that compile unit.

© Copyright IBM Corp. 1995, 1996 27

Beginning a Debugging Session

| For C Only

For C compile units, Debug Tool requires a file containing the source code. By
default, when Debug Tool encounters a new C compile unit, it looks for the source
file or sublibrary member that was specified in the compile-time INFILE option when
the source code was compiled. If a file (not a sublibrary member) was specified in
the INFILE option, the necessary label information must be available for Debug
Tool to read the file. If a sublibrary member was specified in the INFILE option,
Debug Tool expects to find the member in the same sublibrary as it was in when it
was compiled. If the INFILE option was not specified at compilation time, or
INFILE(SYSIPT) was specified, Debug Tool does not look for a source file.
Instead, you need to use the SET SOURCE command to specify the name of a
sublibrary member where the source file can be found. For more information, see
['SET SOURCE” on page 322|

| End of For C Only

| For COBOL and PL/I Only

For COBOL and PL/I compile units, Debug Tool requires a file containing the
compiler listing. By default, when Debug Tool encounters a new COBOL or PL/I
compile unit (cuname), it first looks for a sublibrary member named cuname.LIST in
the source search chain. If this sublibrary member is not found, Debug Tool looks
for a DLBL of a SAM ESDS file or a sequential disk file with a file-id of
DTVSE.cuname.LIST. If a DLBL with a matching file-id is not found, Debug Tool
looks for VSAM catalog entry for a SAM ESDS file with a file-id of
DTVSE.cuname.LIST.

For information about how to create a compiler listing file, see [‘Compiler Listings|
|(and Program Source)” on page 23,

| End of For COBOL and PL/I Only

If the Source window is empty when Debug Tool starts, press LIST (PF4) with the
cursor on the command line to display the Debug Tool Listing panel. The Listing
panel indicates the name of the source or listing file that Debug Tool expected to
find. With this panel you can overtype the displayed filename with the actual name
of your source or listing file, and press QUIT (PF3). This causes Debug Tool to
issue a SET SOURCE command specifying the source filename you entered.
Alternatively, you can quit the Listing panel and, on the command line, enter the
SET SOURCE command to specify the name of the source or listing file.

For more information, see[“SET SOURCE” on page 322 as well as
[IDEFAULT LISTINGS” on page 307|.

28 Debug Tool/VSE V1R1 User's Guide and Reference

Beginning a Debugging Session

Preferences File

The preferences file is specified as a suboption of the TEST run-time option. It is
processed by Debug Tool before any primary commands file and is useful for
setting up the Debug Tool environment. This file will usually contain Debug Tool
commands that you would use during every Debug Tool session. For example, you
can use it to set up your preferred layout of the Debug Tool windows and the
preferred screen colors for a full-screen session.

If no preferences file is specified in the TEST run-time option, Debug Tool looks for
a default preferences file in the sublibrary member userid. DTPREF (for information
on how userid is determined, see [‘Determining the Default Userid” on page 30).
Debug Tool searches for this member in the sublibraries specified in the SOURCE
search chain (specified using the LIBDEF JCL statement).

It is possible to use the standard input device, SYSIPT, as a preferences file. See
page [1]for an example of this.

Note: If you do create a preference file you must remember to conform to the
source format for the language of any of the main compile units you wish to
debug.

Commands File

The commands file can be specified to Debug Tool as a suboption of the TEST
run-time option or by the Debug Tool USE command.

* |If a commands file is specified as part of the commands_file suboption of the
TEST run-time option it is termed a primary commands file. The commands in
a file specified in this way are executed to end of file.

e |f a commands file is specified by the USE command, it is termed a USE file.
Commands in a USE file (unless the USE command is included as part of a
primary commands file) are executed until a “non-returning” command, such as
GO, is encountered; any further commands in the USE file are ignored.

A commands file is the most convenient way of passing commands to Debug Tool
for a batch debugging session. You can also use it to pass commands to multiple
invocations of a particular application program.

It is possible to use the standard input device, SYSIPT, as a commands file. Note
however that a commands file assigned to SYSIPT cannot be reused as a USE file.
For an example of using SYSIPT as a commands file, see page

Note: If you do create a commands file you must remember to conform to the
source format for the language of any of the main compile units you wish to
debug.

Profile Settings File

Debug Tool preserves debugging session profile settings and color customization in
the profile settings file. The profile settings file is stored in a sublibrary member
with the name userid.DTSAFE (for information on how userid is determined, see
[‘Determining the Default Userid” on page 30).

When initializing a debugging session, Debug Tool searches the sublibraries
specified in the SOURCE search chain (specified using the LIBDEF JCL statement)
for member userid DTSAFE, and reads the first occurrence of the member it finds

Chapter 3. Beginning a Debugging Session 29

Beginning a Debugging Session

The Log File

in the SOURCE search chain. It then uses the information stored in this member to
set up the environment for the debugging session. If Debug Tool subsequently
needs to update the profile settings file during a debugging session, it writes the
revised settings to the same member in the same sublibrary.

If, when initializing a debugging session, Debug Tool does not find member
userid DTSAFE, at the end of the debugging session it creates the member in the
first sublibrary in the SOURCE search chain.

Debug Tool can record commands and their generated output in a session log file.

By default, Debug Tool writes the session log to the system output device,
SYSLST. The default under CICS is no log file.

The results of command execution are logged as comments in the session log
while the actual commands themselves are logged in the syntax of the current
programming language. This means the session log can be used as a commands
file for a later Debug Tool session without having to edit out the results from a
previous run.

The SET LOG command can be used to change the log file from the default.
Issuing the command SET LOG OFF suppresses output to the log file.

Determining the Default Userid

Unless otherwise specified, Debug Tool uses default names for preference and
profile settings files, where the default is based on a userid. How the userid is
determined depends upon whether you are running your debugging session in the
batch environment or the CICS environment. Debug Tool determines the userid for
a debugging session as described below.

Batch (non-CICS) Environment
In the batch environment, Debug Tool determines the userid as follows:

e For a VSE/ESA system IPLed with security checking active (SEC=YES
specified in the IPL SYS command):

— If a userid is associated with the job, Debug Tool uses that userid. The
userid associated with a job can be provided by the following sources:

- The userid specified in the // ID job control statement

- The userid specified in the SEC parameter of the VSE/POWER
* $$ JOB statement

- The logon userid, if the job was submitted by a user logged on to the
VSE/ESA Interactive Interface

- The logon userid, if the job was submitted by a user logged on to
VSE/ICCF

- The logon userid, if the job was submitted by a user logged on to a
workstation with the SEND/RECEIVE command interface

30 Debug Tool/VSE V1R1 User's Guide and Reference

Beginning a Debugging Session

— If a userid is not associated with the job, Debug Tool sets the userid to one
of the following:

- The name of the VTAM logical unit when debugging in full-screen mode
session

- The Debug Tool default value, DTVSE, when debugging in batch mode

» For a VSE/ESA system IPLed without security checking active (SEC=NO
specified in the IPL SYS command), Debug Tool sets the userid to one of the
following:

— The name of the VTAM logical unit when debugging in full-screen mode
session

— The Debug Tool default value, DTVSE, when debugging in batch mode

CICS Environment
In the CICS environment, Debug Tool sets the userid to one of the following:

e The CICS logon userid, if available
* The Debug Tool default value, DTVSE, if the CICS logon userid is not available

Specifying Files to Debug Tool
A primary commands file and a preferences file can be passed to Debug Tool as
suboptions of the TEST run-time option. In addition, the following commands can
be used to specify source files, commands files, and log files to Debug Tool:

e PANEL LISTINGS
* PANEL SOURCES
SET LOG

SET SOURCE

* USE

A file specified to Debug Tool can be any of the following:

e A sublibrary member

* A SAM ESDS file

* A sequential disk file

e For a commands file, the system input device (SYSIPT)

Sublibrary Members

You indicate to Debug Tool that a file is a sublibrary member by enclosing the
member name and type in parentheses and connecting the name and type with a
period (.) character. For example, the following command tells Debug Tool to start
writing the session log to the sublibrary member MYLOG.DTLOG:

SET LOG ON FILE (MYLOG.DTLOG)

If you want, you can qualify the sublibrary member name with the name of the
sublibrary. You do this by specifying the library and sublibrary names, connected
with a period (.) character, immediately before the left parenthesis preceding the
member name. For example, the following command tells Debug Tool to start
writing the session log to the sublibrary member MYLOG.DTLOG in sublibrary
TEST.USER:

SET LOG ON FILE TEST.USER(MYLOG.DTLOG)

Chapter 3. Beginning a Debugging Session 31

Beginning a Debugging Session

32

If a sublibrary member name is not qualified by a sublibrary name, Debug Tool
needs to determine which sublibrary is to be used. Where Debug Tool searches
for, or writes, a sublibrary member depends upon its member type. When Debug
Tool is required to read from a sublibrary member, it searches for that member in
the sublibraries specified by the LIBDEF JCL statement matching the member type.
When Debug Tool must write to a sublibrary member, it either creates the member
in the first sublibrary specified by the LIBDEF JCL statement matching the member
type (if the member does not already exist), or rewrites the member in the same
sublibrary (if the member already exists).

The following describes the sublibraries used according to member type:

Member Type Sublibraries Used

PROC Sublibraries in the PROCEDURE chain (LIBDEF PROC,SEARCH)
oBJ Sublibraries in the OBJECT chain (LIBDEF OBJ,SEARCH)
Other Sublibraries in the SOURCE chain (LIBDEF SOURCE,SEARCH)

Note: Do not use a member type of DUMP or PHASE when specifying a
sublibrary member to Debug Tool. Using such a member type will cause an
error when Debug Tool attempts to open the file.

SAM ESDS Files and Sequential Disk Files

You can specify a SAM ESDS file or sequential disk file to Debug Tool using either
the filename (DLBL) or file-id. If a file-id could be interpreted as a filename it must
be preceded with a slash (/).

The following examples use a SAM ESDS listing file with the filename MYLIST, and
a sequential disk commands file with the file-id MY.COMMAND.FILE. The JCL for
these files could be specified as follows:

// DLBL MYLIST,'COMPILER.LISTING.FILE',0,VSAM

// DLBL MYCMDS, 'MY.COMMAND.FILE',0,SD
// EXTENT SYS045,DSKVL1

The following example tells Debug Tool to find the compiler source listing for
compile unit cuname in the SAM ESDS file with the filename MYLIST:

SET SOURCE ON (cuname) MYLIST;

The following example tells Debug Tool to read commands from the sequential disk
file with a file-id of MY.COMMAND.FILE:

USE my.command.file;

Under certain circumstances, Debug Tool is able to dynamically create a SAM
ESDS file given just a file-id, without a corresponding DLBL job control statement.
If you specify a new (non-existent) log file to Debug Tool using a file-id, Debug Tool
will, if possible, dynamically create the log file as a SAM ESDS file. The new file
will be cataloged in the VSAM job catalog (the VSAM catalog specified in the label
information for IJSYSUC) or, if no job catalog is available, the VSAM master
catalog. You do not need to provide a DLBL job control statement for Debug Tool
to be able to dynamically create the file.

Debug Tool/VSE V1R1 User's Guide and Reference

Using the Run-Time TEST Option

System Input Device (SYSIPT)

When specifying the name of a commands file, you can specify the system input
device (SYSIPT) to Debug Tool as follows:

USE SYSIPT;

Using the Run-Time TEST Option

You can use the run-time TEST option to invoke Debug Tool and begin testing your
program. The option is passed as an execution time parameter when you invoke
your application program, as shown in the following examples.

For C, and PL/I:
// EXEC MYPROG,PARM="'TEST(suboptions) / prog arg list'

For COBOL:
// EXEC MYPROG,PARM='prog arg list / TEST(suboptions)'

The simplest form of the TEST option is TEST with no suboption, however,
suboptions provide you with more flexibility. There are four suboptions available:

e test level (determines what HLL conditions raised by your program will cause
Debug Tool to gain control)

e commands_file (determines which primary commands file is used as the initial
source of commands in the absence of, or as an alternative to, a terminal)

e prompt_level (determines whether an initial commands list is unconditionally
executed during program initialization)

e session_parm and preferences_file (provides the session parameter(s) and a
file that you can use to specify default settings for your debugging environment,
such as customizing the settings on the Debug Tool Profile panel)

Run-Time TEST Option Syntax

You can specify any combination of the run-time TEST suboptions, but they must
be specified in the order presented, as shown in the following syntax diagram. Any
option or suboption referred to as "default" is the IBM-supplied default, and might
have been changed by your system administrator during installation. For examples
of how to use TEST and each of its suboptions, see fRun-Time TEST Option]
|[Examples” on page 40|

Chapter 3. Beginning a Debugging Session 33

Using the Run-Time TEST Option

The syntax for this option is:

ENOTEST
(E] t
l—{ test_level |J |—{ commands_file }—‘

| il
L{ prompt_level }J |
|

\ 4
4

A\
\
A

]

)
L‘{ session_parm and preferences_file }—J
test_level:

—ALL
|] |

commands_file:
—%

| |
[|
‘—commands_file_designator—

prompt_level:

| —PROMPT |
f I
—NOPROMPT
-
SRR 25—
session_parm and preferences_file:
| |
f 1
|—MFI—% :J Epreferencesjile_designator—
Terminal Id;i *
VTAM LU Id

NOTEST
Specifies that Debug Tool is not invoked at program initialization. However,
invoking Debug Tool is still possible through the use of CEETEST, PLITEST, or
the ctest() function. In such a case, the suboptions specified with NOTEST
are used when Debug Tool is invoked.

TEST
Specifies that Debug Tool is given control according to its suboptions. The
TEST suboptions supplied will also be used if Debug Tool is invoked with
CEETEST, PLITEST, or __ctest().

test_level:

ALL (or blank)
Specifies that the occurrence of an attention interrupt, termination of your
program (either normally or through an ABEND), or any program or LE/VSE
condition of Severity 1 and above causes Debug Tool to gain control,
regardless of whether a breakpoint is defined for that type of condition. If a
condition occurs and a breakpoint exists for the condition, the commands
specified in the breakpoint are executed. If a condition occurs and a
breakpoint does not exist for that condition, or if an attention interrupt
occurs, Debug Tool does the following:

34 Debug Tool/VSE V1R1 User's Guide and Reference

Using the Run-Time TEST Option

 In interactive mode, it reads commands from a commands file (if it
exists) or prompts you for commands

¢ |n noninteractive mode, it reads commands from the commands file

For more information about attention interrupts, see ['Requesting an|
[Attention Interrupt During Interactive Sessions” on page 133

ERROR
Specifies that only the following conditions cause Debug Tool to gain
control without a user-defined breakpoint.

e An attention interrupt
e Program termination
* A predefined LE/VSE condition of Severity 2 or above

e Any C condition other than SIGUSR1, SIGUSR2, SIGINT, or
SIGTERM.

LE/VSE conditions are described in LE/VSE Debugging Guide and
Run-Time Messages.

If a breakpoint exists for one of the above conditions, commands specified
in the breakpoint are executed. If no commands are specified, Debug Tool
reads commands from a commands file or prompts you for them in
interactive mode.

NONE
Specifies that Debug Tool gains control from a condition only if a
breakpoint is defined for that condition. If a breakpoint does exist for the
condition, the commands specified in the breakpoint are executed. An
attention interrupt does not cause Debug Tool to gain control unless Debug
Tool has previously been invoked. For information about how to change
the TEST level after you start your session, see FSET TEST” on page 323.

commands_file:

* (or blank)
Indicates that no primary commands file is supplied; the terminal, if
available, is used as the source of Debug Tool commands.

commands_file_designator
Is the valid designation for the primary commands file which is used as the
initial source of commands after the preferences file. The primary
commands file can be one of:

» A filename (DLBL). If the specified filename is longer than seven
characters, it is automatically truncated, but no error message is
issued.

e Afile-id. If the file-id provided could be interpreted as a filename, it
must be preceded with a slash (/) and enclosed in quotation marks, for
example "/FILEID".

e A member of a sublibrary. The member name must be enclosed in
brackets and the brackets further enclosed in double quotation marks
("), for example "(MEMBER.NAME)". If the sublibrary containing the
member is in the LIBDEF search chain that corresponds to the member

Chapter 3. Beginning a Debugging Session 35

Using the Run-Time TEST Option

type, the library name need not be specified. For information about
which LIBDEF search chain is searched for a given member type, see
[FSublibrary Members” on page 31|

e SYSIPT. The system input device.

If the designator might otherwise cause an ambiguity in the list of
suboptions, you can enclose it in double quotation marks to differentiate it
from the remainder of the list. If you are using a single file-id, no quotation
marks are required.

The primary commands file designator has a maximum length of 80
characters.

Once the primary commands file is accessed as a source of commands, it
continues to act in this capacity until all commands have been executed.

In interactive mode, when the end of the primary commands file is reached,
Debug Tool prompts your terminal for commands until a QUIT command or
the end of your application is reached.

In batch mode, Debug Tool reads and executes commands from the
primary commands file until either the file runs out of commands or your
program finishes running. If the end of the file is reached without
encountering a QUIT command, Debug Tool forces a GO until the end of
your program is reached.

It is possible to use a log file from one Debug Tool session as a source of
commands for a subsequent session to regression test your application.

prompt_level:

PROMPT (or ; or blank)
Indicates that you want Debug Tool to be invoked immediately after
LE/VSE initialization. Commands are read from the preferences file and
then any designated primary commands file. In interactive mode Debug
Tool then prompts your terminal for commands.

NOPROMPT (or)
Indicates that you do not want Debug Tool invoked immediately after
LE/VSE initialization. Instead, your application begins running.

command
Is one or more valid Debug Tool commands. Debug Tool is invoked
immediately after program initialization, and then the command (or
command string) is executed. The command string can have a maximum
length of 250 characters, and must be enclosed in double quotation marks.
Multiple commands must be separated by a semicolon.

Note: If you include a STEP or GO in your command string, none of the
subsequent commands are processed.

session_parm and preferences_file:

MFI
Indicates you are using a 3270-type terminal for your debugging sessions.

36 Debug Tool/VSE V1R1 User's Guide and Reference

Using the Run-Time TEST Option

Terminal Id
(For CICS only) specifies an up to four character Terminal Id which
receives Debug Tool screen output during a dual terminal debugging
session. The corresponding terminal should be in service and acquired
ready to receive Debug Tool related 1/0.

VTAM LU Id
Specifies an up to eight character VTAM logical unit identifier for a
3270-type terminal to be used for a full-screen interactive debugging
session. The corresponding terminal must be known to the VSE/ESA
system on which the batch debugging job is executing and not be in
session with any application.

If Debug Tool encounters an error with the specified terminal it will issue
the following messages and the application will complete execution with no
further interaction from Debug Tool.

EQA1996E THE VTAM LOGICAL UNIT DEFINED FOR THE 3270 SESSION COULD

NOT BE ACQUIRED.
EQA1987E DEBUGGER TERMINATED, EXECUTION CONTINUES

preferences_file_designator
Is the valid designation specifying the preferences file to be used by Debug
Tool (see commands_file_designator, above, for the required format).

This file is read the first time Debug Tool is invoked, and must contain a
sequence of Debug Tool commands to be executed.

If no preferences file is specified Debug Tool looks for a default
preferences file in the sublibrary member userid. DTPREF. Debug Tool
searches for this member in the sublibraries specified in the SOURCE
search chain (specified using the LIBDEF JCL statement)] “Determining
the Default Userid” on page 30|describes how the value for userid is
derived.

* Specifies that no preferences file is supplied.

[‘Files Used By Debug Tool” on page 27| provides more details on the various files
used by Debug Tool.

Run-Time TEST Option Considerations

When using the run-time TEST option, remember that:

e The LE/VSE run-time options have the following order of precedence (from
highest to lowest):

1. Installation options in the CEEDOPT file that were specified as
nonoverrideable with the NONOVR attribute.

2. Options specified by the LE/VSE assembler user exit. Debug Tool uses
the DTCN transaction in the CICS environment and customized LE/VSE
user exit EQADCCXT that is link-edited with the application. For additional

information see |“Pregaring and Using DTCN to Invoke Debug Tool under|
CICS” on page 109

1 |f the object module for the source program is input to the linkage editor before the CEEUOPT object module, then the run-time
options specified in the source program override the options specified in CEEUOPT. You can force the order in which object
modules are included by the order in which linkage editor INCLUDE statements are specified.

Chapter 3. Beginning a Debugging Session 37

Using the Run-Time TEST Option

38

3. Options specified at the invocation of the application, using the run-time
TEST option, unless disabled by the LE/VSE option, NOEXECOPS.

4. Options specified within the source program (with #pragma or PLIXOPT) or
application options specified with CEEUOPT and link-edited with the
application."

5. Option defaults specified at installation in CEEDOPT.
6. IBM-supplied defaults.

e Commands and suboptions are processed in the following order:

1. Suboption defaults
. Commands in a preferences file (preferences_file suboption)
. A command string passed in the run-time options (prompt_level suboption)

. The initial set of commands, whether it consists of a command string

a A~ W DN

. Commands in a primary commands file (commands_file suboption)
6. Commands entered at the command line (interactive mode)

In C or PL/I, you can define TEST with suboptions using a #pragma runopts or
PLIXOPT string, then specify TEST with no suboptions at run time. This
causes the suboptions specified in the #pragma runopts or PLIXOPT string to
take effect.

Suboptions can be specified with NOTEST. This means you can start your
program using the NOTEST option and specify suboptions you might want to
take effect later in your debugging session. The program begins running
without Debug Tool taking control.

To enable the suboptions you specified with NOTEST, invoke Debug Tool
during your program's execution using a library service call such as CEETEST,
PLITEST, or the __ ctest() function.

If the test level in effect causes Debug Tool to gain control at a condition or at
a particular program location, an implicit breakpoint with no associated actions
is assumed. This occurs even though you have not previously defined a
breakpoint for that condition or location using an initial command string or a
primary commands file. Control is given to your terminal or to your primary
commands file.

Once the primary commands file is accessed as a source of commands, it
continues to act in this capacity until all commands have been executed or
Debug Tool has ended. This differs from a commands file specified in a Debug
Tool USE command in that, if a USE file contains a command that returns
control to the program (such as STEP or GO) all subsequent commands are
discarded. However, USE files invoked from within a primary commands file
take on the characteristics of the primary commands file and can be executed
until complete (seeF[USE Command” on page 333|for a description of the USE
command).

In batch mode, when end-of-file is reached in your commands file, a GO
command is forced at each request for a command until the program
terminates. If another command is requested after program termination, a
QUIT command is forced.

If Debug Tool is invoked during program initialization, invocation occurs before
the main prolog has completed. At that time no program blocks are active and

Debug Tool/VSE V1R1 User's Guide and Reference

Using the Run-Time TEST Option

references to variables in the main procedure cannot be made, compile units
cannot be called, and GOTO cannot be used. However, references to static
variables can be made.

If you enter STEP at this point, before entering any other commands, both
program and LE/VSE initialization will complete and give you access to all
variables. You can also enter all valid commands.

If Debug Tool is invoked during program execution (for example, using a
CEETEST call), it may not be able to find all compile units associated with your
application. Compile units located in phases that are not currently active are
not known to Debug Tool, even if they were executed prior to Debug Tool's
initialization.

Debug Tool does not know about compile units that were compiled without the
TEST option, even if they are active. Nor does it know about compile units
written in unsupported languages.

For example,

1. Phase PHASE1 contains compile units CU1 and CU2, both compiled with
the TEST option.

2. The compile unit CU1 calls CUX, contained in phase PHASE2, which
returns after it completes processing.

3. The compile unit CU2 contains a call to the CEETEST library service.

When the call to CEETEST initializes Debug Tool, only CU1 and CU2 are
known to it. Debug Tool does not recognize CUX.

The results of execution of the initial set of commands whether it consists of a
command string included in the run-time options or a primary commands file,
are logged as comments in the session log. The session log can be used as a
commands file without having to edit out the results from a previous run.

The initial set of commands, whether it consists of a command string included
in the run-time options or a primary commands file, can contain a USE
command to get commands from a secondary file. If invoked from the primary
commands file, a USE file takes on the characteristics of the primary
commands file. See FUSE Command” on page 333| for details.

The initial command string is performed only once, when Debug Tool is first
initialized.

Commands in the preferences file are performed only once, when Debug Tool
is first initialized.

You can change the run-time TEST/NOTEST options at any time with the SET
TEST command. See[‘SET TEST” on page 323}

The primary commands file is shared across multiple enclaves. That is, if a
new enclave starts commands will be executed from the current location in the
primary commands file.

Chapter 3. Beginning a Debugging Session 39

Using the Run-Time TEST Option

Run-Time TEST Option Examples
The following examples of using the run-time TEST option are provided to illustrate
run-time options available for your programs. They do not illustrate complete
commands. For more information on specifying run-time options, see
[Your Program for a Debugging Session” on page 42| and LE/VSE Programming
Reference.

e NOTEST

Debug Tool is not invoked at program initialization. Note that a call to
CEETEST, PLITEST, or __ctest() causes Debug Tool to be invoked during
the program's execution.

e TEST

Specifying TEST with no suboptions causes a check for other possible
definitions of the suboption. For example, C allows default suboptions to be
selected at compile time using #pragma runopts. Similarly, PL/I offers the
PLIXOPT string. LE/VSE provides the macro CEEXOPT. Using this macro,
you can specify installation and program-specific defaults. For more
information on using CEEXOPT, see LE/VSE Programming Guide.

If no other definitions for the suboptions exist, the IBM-supplied default test
level is (ALL,*,PROMPT).

o TEST(ALL,*,*,*)

Debug Tool is not invoked initially; however, any condition raised in your
program causes Debug Tool to be invoked, as does a call to CEETEST,
PLITEST, or _ ctest(). Neither a primary commands file nor preferences file
is used.

e TEST(NONE, ,*,*)

Debug Tool is not invoked initially and begins by running in a "production
mode", that is, with minimal effect on the processing of the program. However,
Debug Tool can be invoked using CEETEST, PLITEST, or _ ctest().

e TEST(ALL,"TEST.LIBRARY(COBOL.CMD)",PROMPT,PREFER)

— Debug Tool is invoked at the end of environment initialization, but before
the main program prolog has completed.

— The SAM ESDS file or the sequential disk file with the filename (DLBL)
PREFER is processed as the preferences file.

— Subsequent commands are found in the COBOL.CMD member of the
sublibrary TEST.LIBRARY.

If all commands in the commands file are processed and you issue a STEP
command when prompted, or a STEP command is executed in the commands
file, the main block completes initialization (that is, its AUTOMATIC storage is
obtained and initial values are set). If Debug Tool is reentered later for any
reason, it continues to obtain commands from COBOL.CMD repeating this
process until end-of-file is reached. If the end of the file is reached without
encountering a QUIT command, Debug Tool forces a GO until the end of your
program is reached.

e TEST(ALL,,,MFI%D0820001:)

For full-screen interactive debugging, Debug Tool is invoked on the VTAM
logical unit D0820001 at end of the environment initialization.

40 Debug Tool/VSE V1R1 User's Guide and Reference

Using the Run-Time TEST Option

e TEST(ALL,SYSIPT,,MFI%D0840001:SYSIPT)

Debug Tool is invoked on the terminal D0840001 at the end of environment
initialization. Both the preferences file and primary commands file are specified
as SYSIPT. As the preferences file is read to end-of-file first, the job stream to
execute a COBOL program in this case would look like:

// EXEC PROG,PARM="'/TEST(ALL,SYSIPT, ,MFI%D0840001:SYSIPT)"'

SET COLOR ... ; <— preferences file commands
/*

STEP 10; <«— commands file commands
/*

e TEST(ALL,,,MFI%F000:)

For CICS dual terminal, Debug Tool is invoked on the terminal FOO0 at the end
of the environment initialization.

Specifying Run-Time TEST Option with #pragma runopts in C
The run-time TEST option can be specified either when you invoke your program,
or directly in your source by using this #pragma:

#pragma runopts (execops,test(suboption,suboption...))

This #pragma must appear before the first statement in your source file. When
EXECOPS is specified, any options entered on the command line override those in
the #pragma. For example, if you specified the following in the source:

#pragma runopts (execops,notest(all,*,prompt))
then invoked the program with the following parameter:
// EXEC program,PARM="'TEST/'

the result would be
TEST(ALL,*,PROMPT).
TEST overrides the NOTEST option specified in the #pragma and, because TEST

does not contain any suboptions of its own, the suboptions ALL, *, and PROMPT
remain in effect.

If you specify NOEXECOPS, either by using a #pragma or with the compile-time
EXECOPS option, no command line run-time options take effect.

For more information on #pragma runopts, see IBM C for VSE/ESA User's Guide
and LE/VSE Programming Guide.

Specifying Run-Time TEST Option with PLIXOPT string in PL/I

The run-time TEST option can be specified either when you invoke your program,
or directly in your source by using a PLIXOPT string:

DCL PLIXOPT CHAR(nn) VAR STATIC EXTERNAL INIT('TEST(suboption,suboption...)');

Chapter 3. Beginning a Debugging Session 41

Invoking Your Program and Debug Tool

When EXECOPS is specified, any options entered on the command line override
those in the PLIXOPT string. For example, if you specified the following in the
source:

DCL PLIXOPT CHAR(nn) VAR STATIC EXTERNAL INIT('NOTEST(ALL,*,PROMPT)');

then invoked the program with the following parameter:
// EXEC program,PARM='TEST(,, ,MFI%MYLUNAME:*)/"

the result would be:
TEST(ALL, *,PROMPT ,MFI%MYLUNAME :)

TEST overrides the NOTEST option specified in the PLIXOPT string and, because
TEST does not contain values for the first three suboptions, suboptions ALL, *, and
PROMPT remain in effect.

For more information on the PLIXOPT string, see IBM PL/I for VSE/ESA
Programming Guide and LE/VSE Programming Guide.

Invoking Your Program When Starting a Debugging Session

After you have decided what level of testing you want to employ during your
debugging session, you can invoke your program using the appropriate run-time
TEST option. If you are using Debug Tool, this requires no special procedures
(although certain considerations exist and are covered in [Invoking Your Program|
[for a Debugging Session’).

Invoking Your Program for a Debugging Session

42

To begin a debugging session, ensure your program has been compiled with the
compile-time TEST option, and take the following steps:

1. Make sure all Debug Tool and program libraries are available and that all
necessary Debug Tool files, such as the session log file, the primary
commands file, the preferences file, and any desired USE files are available.
This might involve including them as part of a sublibrary search chain (specified
using the LIBDEF JCL statement).

2. Include JCL statements to access all other files containing data your program
needs.

3. Ensure the Debug Tool log file will be written to the correct location. By default
Debug Tool writes the log file for a debugging session to the system output
device, SYSLST. The session log file keeps a record of your debugging
session, and can be used as a commands file during subsequent sessions.

For more information on session log files, see [‘Using the Session Log File to|
[Maintain a Record of Your Session” on page 87|

4. Start your program with the run-time TEST option, specifying the appropriate
suboptions, or include a call to CEETEST, PLITEST, or __ctest() in the
program's source. For more information about these calls, see [Using]
[Alternative Debug Tool Invocation Methods” on page 43}

For more information about LE/VSE run-time options like TRAP(ON), see LE/VSE
Programming Reference.

Debug Tool/VSE V1R1 User's Guide and Reference

Invoking Your Program and Debug Tool

Invoking Debug Tool under CICS
To use Debug Tool under CICS, you need to ensure that you have completed all of
the required installation and configuration steps for CICS, LE/VSE, and Debug Tool.
See ['Debugging CICS Programs” on page 107] and the appropriate product
installation information.

You can invoke Debug Tool in three ways:

e Single Terminal Mode. Debug Tool displays its screens on the same terminal
as the application. This can be set up using CEETEST, the run-time TEST
option (specified using the CEEUOPT macro, the pragma runopts compiler
directive, or the PLIXOPT string), or using DTCN.

e Dual Terminal Mode. Debug Tool displays its screens on a different terminal
than the one used by the application. This can be set up using the run-time
TEST option (specified using the CEEUOPT macro, the pragma runopts
compiler directive, or the PLIXOPT string) or using DTCN.

¢ Non-terminal Mode. Debug Tool does not have a terminal, but uses a
commands file for input and writes output to the log. This can be set up using
CEETEST, the run-time TEST option (specified using the CEEUOPT macro, the
pragma runopts compiler directive, or the PLIXOPT string), or using DTCN.

See [‘Debugging CICS Programs” on page 107|for more details.

Using Alternative Debug Tool Invocation Methods

Debug Tool can also be invoked directly from within your program using one of the
following methods:

e LE/VSE provides the callable service CEETEST which is invoked from
LE/VSE-enabled languages.

e For C programs, you can use a __ctest() function call.
Note: The _ ctest() function is not supported in CICS.
e For PL/I programs, you can use a call to the PLITEST built-in subroutine.
To invoke Debug Tool using these alternatives, you still need to be aware of the

TEST suboptions specified using NOTEST, CEEUOPT, or other “indirect” settings.
See |‘Run-Time TEST Option Considerations” on page 37 for more information.

Invoking Debug Tool with CEETEST

Using CEETEST, you can invoke Debug Tool from within your program and send it
a string of commands. If no command string is specified, or the command string is
insufficient, Debug Tool prompts you for commands from your terminal or reads
them from the commands file. In addition, you have the option of receiving a
feedback code that tells you whether the invocation procedure was successful.

If you don't want to compile your program with hooks, you can use CEETEST calls
to invoke Debug Tool at strategic points in your program. If you decide to use this
method, you still need to compile your application so that symbolic information is
created.

Chapter 3. Beginning a Debugging Session 43

Invoking Your Program and Debug Tool

Using CEETEST when Debug Tool is already initialized results in a reentry that is
similar to a breakpoint.

Usage Notes:
C Include Teawi.h header file.

PL/ Include CEEIBMAW and CEEIBMCT. These files are installed with
LE/VSE. The default installation sublibrary for this file is
PRD2.SCEEBASE. See the example on page [48.

Batch and CICS Nonterminal Processes
It is strongly recommended that you use feedback codes (fc) when
using CEETEST to initiate Debug Tool from a batch process or a
CICS nonterminal task; otherwise results are unpredictable.

See LE/VSE Programming Reference for more details on the list of files used in C,
COBOL, and PL/I programs when using the LE/VSE callable services (like
CEETEST).

The syntax for CEETEST is:

For C

A\
A

»»—v0id—CEETEST—()

|—s tring_o f_commandsJ ’ Lch

For COBOL

»»>—CALL—"CEETEST"—USING—string_of_commands—,—fc

\ 4
A

For PL/I

\ 4
A

»»—CALL—CEETEST—(* , *)
|—string_o f_commandsJ |—ch

string_of_commands (input)
A halfword length prefixed string containing a Debug Tool command list,
string_of_commands is optional.

If Debug Tool is available, the commands in the list are passed to Debug Tool
and carried out.

If the string_of_commands is omitted, Debug Tool will read commands from the
primary commands file, if available, or, in interactive mode, prompt you for
commands.

44 Debug Tool/VSE V1R1 User's Guide and Reference

Invoking Your Program and Debug Tool

fc (output)
A 12-byte feedback code, optional in some languages, that indicates the result
of this service.

CEE000 Severity = 0
Msg_No = Not Applicable
Message = Service completed successfully

CEE2F2 Severity = 3
Msg_No = 2530
Message = A debug tool was not available

Note: The CEE2F2 feedback code can also be obtained by batch applications
or CICS nonterminal tasks getting allocation failures. For example,
either the Debug Tool environment was corrupted or the debug event
handler could not be loaded.

LE/VSE provides a callable service called CEEDCOD to help you decode the fields
in the feedback code. Requesting the return of the feedback code is
recommended. See LE/VSE Programming Reference for details.

For C and COBOL, if Debug Tool was invoked through CALL CEETEST the GOTO
command is only allowed after Debug Tool has returned control to your program via
STEP or GO.

The following examples show how to use CEETEST to invoke Debug Tool from
each language:

Examples of CEETEST Function Calls for C

Example 1: In this example, a Null command string is passed to Debug Tool and
a pointer to the LE/VSE feedback code is returned. If no other TEST run-time
options have been compiled into the program, the call to CEETEST invokes Debug
Tool with all defaults in effect. After it gains control, Debug Tool prompts you for
commands.

#include <leawi.h>

#include <string.h>
#include <stdio.h>

int main(void) {
_VSTRING commands;
_FEEDBACK fc;

strcpy (commands.string, "");
commands.length = strlen(commands.string);

CEETEST (&commands, &fc);

Chapter 3. Beginning a Debugging Session 45

Invoking Your Program and Debug Tool

46

Example 2: In this example, a string of valid Debug Tool commands is passed to
Debug Tool and a pointer to the LE/VSE feedback code is returned. The call to
CEETEST invokes Debug Tool and the command string is processed. At
statement 23, the values of x and y are displayed in the Log, and execution of the
program resumes. Barring further interrupts, Debug Tool regains control at
program termination and prompts you for commands. The command LIST(Z) is
discarded when the command GO is executed.

Note: If you include a STEP or GO in your command string, all commands after
that are not processed. The command string operates like a commands
file.

#include <leawi.h>

#include <string.h>
#include <stdio.h>

int main(void) {
_VSTRING commands;
_FEEDBACK fc;

strcpy(commands.string, "AT LINE 23; {LIST(x); LIST(y);} "

"GO; LIST(z)");
commands.length = strlen(commands.string);

CEETEST (&commands, &fc);

Debug Tool/VSE V1R1 User's Guide and Reference

Invoking Your Program and Debug Tool

Example 3: In this example, a string of valid Debug Tool commands is passed to
Debug Tool and a pointer to the feedback code is returned. If the call to CEETEST
fails, an informational message is printed.

If the call to CEETEST succeeds, Debug Tool is invoked and the command string
is processed. At statement 30, the values of x and y are displayed in the Log, and
execution of the program resumes. Barring further interrupts, Debug Tool regains
control at program termination and prompts you for commands.

#include <leawi.h>

#include <string.h>
#include <stdio.h>

#define SUCCESS "\0\0\0\0"
int main (void) {

int x,y,z;
VSTRING commands;

_FEEDBACK fc;

strcpy (commands.string,"AT LINE 30 { LIST(x); LIST(y); } GO;");
commands.length = strlen(commands.string);

CEETEST (&commands,&fc) ;

if (memcmp (&fc,SUCCESS,4) != 0) {
printf("CEETEST failed with message number %d\n",
fc.tok_msgno);
exit(2999);
}
1

Examples of CEETEST Calls for COBOL

Example 1: A command string is passed to Debug Tool at its invocation and the
feedback code is returned. After it gains control, Debug Tool becomes active and
prompts you for commands or reads them from a commands file.

For Debug Tool, remember to use the continuation character if your command
exceeds 72 characters. See [‘Continuation (Full-screen mode)” on page 196|.

77 FC Picture x(12) Value ZEROES.
77 DebugTool Picture x(7) Value 'CEETEST'.
01 Parms.
AA Picture 99 Value 14.
BB Picture x(11) Value 'LIST CALLS;'.

CALL DebugTool USING Parms FC.

Chapter 3. Beginning a Debugging Session 47

Invoking Your Program and Debug Tool

Example 2: A string of commands is passed to Debug Tool when it is invoked.
After it gains control, Debug Tool sets a breakpoint at statement 23, runs the LIST
commands and returns control to the program by running the GO command. The
command string is already defined and assigned to the variable
COMMAND-STRING by the following declaration in the data division of your
program:

01 COMMAND-STRING.

05 AA Picture 99 Value 60.
05 BB Picture x(60) Value 'AT STATEMENT 23; LIST (x); LIST (y); GO;'.

In addition, the result of the call is returned in the feedback code, using a variable
defined as:

77 fc Picture x(12).

in the data division of your program. You are not prompted for commands.
CALL "CEETEST" USING COMMAND-STRING fc.

Examples of CEETEST Calls for PL/I

Example 1: Assuming all required declarations have been made, no command
string is passed to Debug Tool at its invocation and the feedback code is returned.
After it gains control, Debug Tool becomes active and prompts you for commands
or reads them from a commands file.

CALL CEETEST(*,%*); /* omit arguments */

Example 2: A command string is passed to Debug Tool at its invocation and the
feedback code is returned. After it gains control, Debug Tool becomes active and
executes the command string. Barring any further interruptions, the program runs
to the TERMINATION breakpoint, where Debug Tool prompts for further
commands.

DCL ch char(50)
init('AT STATEMENT 10 DO; LIST(x); LIST(y); END; GO;');

DCL 1 fb,
5 Severity Fixed bin(15),
5 MsgNo Fixed bin(15),
5 flags,

8 Case bit(2),
8 Sev bit(3),
8 Ctrl bit(3),
5 FaclD Char(3),
5 IS info Fixed bin(31);

DCL CEETEST ENTRY (CHAR(*) VAR OPTIONAL,
1 optional ,
254 real fixed bin(15), /*MsgSevx/
254 real fixed bin(15), /*MSGNUM=*/

254 /*Flags=/,
255 bit(2), /*Flags_Case =/
255 bit(3), /*Flags_Severityx/
255 bit(3), /*Flags_Control */
254 char(3), /*Facility ID =/
254 fixed bin(31)) /*I_S Info =*/

options(assembler) ;

CALL CEETEST(ch, fb);

48 Debug Tool/VSE V1R1 User's Guide and Reference

Invoking Your Program and Debug Tool

Example 3: This example assumes that you use predefined function prototypes
and macros by including CEEIBMAW, and predefined feedback code constants and
macros by including CEEIBMCT.

A command string is passed to Debug Tool which sets a breakpoint on every tenth
executed statement. Once a breakpoint is set, Debug Tool displays the current
location information and continues the execution. After the CEETEST call the
feedback code is checked for proper execution.

Note: The feedback code returned is either CEEO00 or CEE2F2. There is no way
to check the result of the execution of the command passed.
%INCLUDE CEEIBMAW;

%INCLUDE CEEIBMCT;
DCL 01 FC FEEDBACK;

/* if CEEIBMCT is NOT included, the following DECLARES need to be
provided: = ---------- comment start -------------

Declare CEEIBMCT Character(8) Based;
Declare ADDR Builtin;
%DCL FBCHECK ENTRY;
%FBCHECK: PROC(fbtoken, condition) RETURNS(CHAR);
DECLARE
fbtoken CHAR,
condition CHAR;
RETURN("' (ADDR(" || fbtoken||')->CEEIBMCT = '||condition||')');
%END FBCHECK;
%ACT FBCHECK;

Call CEETEST('AT Every 10 STATEMENT * Do; Q Loc; Go; End;'||
'List AT;', FC);

If -FBCHECK(FC, CEE000)
Then Put Skip List('----> ERROR! in CEETEST call', FC.MsgNo);

Invoking Debug Tool with the __ctest() Function

You can also use the C library routine _ ctest() or ctest() to invoke Debug Tool.
Add:

#include <ctest.h>
to your program to use the ctest() function.

Note: If you do not include ctest.h in your source or if you compile using the
option LANGLVL(ANSI), you must use _ ctest() function.

The _ctest() function is not supported in CICS.

When a list of commands is specified with __ ctest(), Debug Tool runs the
commands in that list. If you specify a null argument, Debug Tool gets commands
by reading from the supplied commands file or by prompting you. If control returns
to your application before all commands in the command list are run, the remainder
of the command list is ignored. Debug Tool will continue reading from the specified
commands file or prompt for more input.

If you do not want to compile your program with hooks, you can use __ ctest()
function calls to invoke Debug Tool at strategic points in your program. If you

Chapter 3. Beginning a Debugging Session 49

Invoking Your Program and Debug Tool

50

decide to use this method, you still need to compile your application so that
symbolic information is created.

Using _ ctest() when Debug Tool is already initialized results in a reentry that is
similar to a breakpoint.

The syntax for this option is:

»»—int—_ ctest——(—char—=*char_str_exp—)

\ 4
A

Note:
' The syntax for ctest() and __ctest() is the same.

char_str_exp
Specifies a list of Debug Tool commands.

Examples of __ctest() Calls for C

Example 1: A null argument is passed to Debug Tool when it is invoked. After it
gains control, Debug Tool prompts you for commands (or reads commands from
the primary commands file, if specified).

__ctest(NULL);

Example 2: A string of commands is passed to Debug Tool when it is invoked.
After it gains control, Debug Tool sets a breakpoint at statement 23 and returns
control to the program. You are not prompted for commands. In this case, the
command, LIST z; is never executed because of the execution of the GO
command.
__ctest("at Tine 23 {"

"o Tist x;"

" Tist y;"

n } n

905"

"Tist z;3");

Example 3: Variable ch is declared as a pointer to character string and initialized
as a string of commands. The string of commands is passed to Debug Tool when
it is invoked. After it runs the string of commands, Debug Tool prompts you for
more commands.

char *ch = "at Tine 23 Tist x;";

__ctest(ch);

Debug Tool/VSE V1R1 User's Guide and Reference

Invoking Your Program and Debug Tool

Example 4: A string of commands is passed to Debug Tool when it is invoked.
After Debug Tool gains control, you are not prompted for commands. Debug Tool
runs the commands in the command string and returns control to the program by
way of the GO command.

#include <stdio.h>
#include <string.h>

char *ch = "at Tine 23 printf(\"x.y is %d\n\", x.y); go;";
char buffer[132];

strcpy(buffer, "at change x.y;");

__ctest(strcat(buffer, ch));

Invoking Debug Tool with PLITEST

For PL/I programs, the preferred method of invoking Debug Tool is to use the
built-in subroutine PLITEST. It can be used in exactly the same way as CEETEST,
except that you do not need to include CEEIBMAW or CEEIBMCT, or perform
declarations.

The syntax is:

\ 4
A

»»—CALL—PLITEST

.
E]

L (—character_string_expression—) l

character_string_expression
Specifies a list of Debug Tool commands. If necessary this is converted to a
fixed-length string.

Notes:

1. If Debug Tool executes a command in a CALL PLITEST command string that
causes control to return to the program (GO for example), any commands
remaining to be executed in the command string are discarded.

2. If you don't want to compile your program with hooks, you can use CALL
PLITEST statements as hooks and insert them at strategic points in your
program. If you decide to use this method, you still need to compile your
application so that symbolic information is created.

Examples of PLITEST Calls for PL/I
Example 1: No argument is passed to Debug Tool when it is invoked. After
gaining control, Debug Tool prompts you for commands.

CALL PLITEST;

Example 2: A string of commands is passed to Debug Tool when it is invoked.
After gaining control, Debug Tool sets a breakpoint at statement 23, and returns
control to the program. You are not prompted for commands. In addition, the LIST
Y; command is discarded because of the execution of the GO command.

CALL PLITEST('At statement 23 Do; List X; End; Go; List Y;');

Chapter 3. Beginning a Debugging Session 51

Invoking Your Program and Debug Tool

Example 3: Variable CH is declared as a character string and initialized as a
string of commands. The string of commands is passed to Debug Tool when it is
invoked. After it runs the commands, Debug Tool prompts you for more
commands.

DCL ch Char(45) Init('At Statement 23 Do; List x; End;');

CALL PLITEST(ch);

52 Debug Tool/VSE V1R1 User's Guide and Reference

Debugging in Full-Screen Mode

Chapter 4. Debugging Your Programs in Full-Screen Mode

The most common features of Debug Tool are described in this chapter to help you
get started using this tool to debug your programs. Language-specific examples
and explanations of the most common tasks are provided to help you quickly gain a
basic understanding of how to use Debug Tool.

The program function (PF) key definitions used in this chapter are based on the
default settings for the keys.

Preparing for Debugging

Before using Debug Tool you must compile at least one part of your program with
the compile-time TEST option. This inserts hooks, which are assembly instructions
that you can see in an assembly listing. The execution of these hooks enables
Debug Tool to gain control during program execution. A detailed description of the
compile-time TEST option for each language is provided in|Chapter 2, “Preparing|
[to Debug Your Program” on page 12|

The simplest way to compile your program while you are learning to use Debug
Tool is one of the following:

e For C, compile your program with TEST
e For PL/I and COBOL, compile your program with TEST(ALL,SYM)

Link your program as usual, except for programs to be run under CICS where
member EQADCCXT must be included from the Debug Tool library.

| For C Only |

When running Debug Tool, links or calls to C programs linked with AMODE 24 are
not supported if the C library phases CEEEV003 and EDCZ24 are loaded in the
31-bit SVA or in a partition that spans the 16MB line. To run any 24-bit C program
under Debug Tool, CEEEV003 and EDCZ24 must be loaded below the line.

| End of For C Only

Invoking Your Program with Debug Tool

To use Debug Tool in interactive mode from a batch program you need to include
the Debug Tool library in your PHASE library search chain and invoke your
program with the run-time TEST option as shown in the following example for C,
and PL/I:

// EXEC MYPROG,PARM='TEST(,,,MFI%luname:) / prog arg list'

For COBOL, invoke your program as follows:
// EXEC MYPROG,PARM='prog arg list / TEST(,,,MFI%Tuname:)"

where Tuname is the VTAM logical unit name of the terminal you want the
full-screen debugging session to become active on.

© Copyright IBM Corp. 1995, 1996 53

Basic Tasks of Debug Tool

Contact your systems programmer if you do not know the name of the Debug Tool
sublibrary on your system, or if you do not know the VTAM logical unit name of the
terminal on which you want to run your debugging session.

For information about invoking your program with Debug Tool in batch
(non-interactive mode) or CICS, see the appropriate sections in [Chapter 7, “Using|
[Debug Tool in Different Modes and Environments” on page 107}

Ending a Debug Session

When you have finished debugging your program, you can either press QUIT (PF3)
or enter QUIT on the command line to end your Debug Tool session.

Basic Tasks of Debug Tool

This section describes how you interface to Debug Tool and describes how to
navigate through the windows provided by Debug Tool. It also describes how to
navigate through a debugging session and how to find help if you need it.

Debug Tool Interface
Debug Tool has a command line for issuing commands, and three windows:

The Source window displays your source code

The Log window records your commands and Debug Tool's responses
The Monitor window continuously displays the values of monitored variables
and other items depending on the command used.

Help

You can get help by either pressing ? (PF1) or entering a question mark (?) on the
command line. This action lists all Debug Tool commands in the Log window.
Putting a question mark after a partial command displays a list of possible
subcommands. For example, enter on the command line:

?

WINDOW ?

WINDOW CLOSE ?

WINDOW CLOSE SOURCE

You can reopen the Source window with:
WINDOW OPEN SOURCE

Window Control

The relative layout of the Source, Monitor, and Log windows can be changed with
the PANEL LAYOUT command. When you are displaying the windows you can
resize the windows by typing WINDOW SIZE on the command line, moving the
cursor to the new intersection point and then pressing Enter.

Finding Text

To find a string within a window, place the string to be searched for in double
quotes (single quotes for a PL/I string) on the command line without pressing
Enter, move the cursor into the window to be searched, then press FIND (PF5).
Pressing FIND (PF5) will do repeat finds of the same string in the window where
the cursor resides.

54 Debug Tool/VSE V1R1 User's Guide and Reference

Basic Tasks of Debug Tool

Scrolling

If the cursor is on the command line, you can page the Source window up by
pressing UP (PF7) and down by pressing DOWN (PF8). To page through other
windows, place the cursor in the desired window and press UP (PF7) or DOWN
(PF8).

You can toggle one of the Source, Log, or Monitor windows to full screen
(temporarily not displaying the others) by moving the cursor into the window you
want to zoom and pressing ZOOM (PF10). Another ZOOM (PF10) will toggle back.
ZOOM LOG (PF11) will toggle the Log window the same way without the cursor
needing to be in the Log window.

You can scroll to an absolute line of the source file displayed in the Source window
by using the SCROLL command. For example, your source file is in the Source
window and you want to see line 188. To get there, enter the following command:

SCROLL TO 188

Changing Source Files

To change the code being viewed in the Source window, you can overtype the
name after SOURCE: on the top line of the Source window with the desired name.
This only works if the compilation unit (CU) is already known to Debug Tool

Alternately you can enter the command:
LIST NAMES CUS

to determine which CUs are known. A list of Compilation Units will be displayed in
the Log window, as shown in the following examples.

Example of a List of C CUs:

THE FOLLOWING CUS ARE KNOWN IN =:
DD:LIBRARY.NAME(CALC.C)

DD: LIBRARY.NAME (PUSHPOP.C)
DD:LIBRARY.NAME (READTOKN.C)

Example of a List of COBOL or PL/I CUs:

THE FOLLOWING CUS ARE KNOWN IN =:
PLICALC

POP

PUSH

READTOK

You can overtype/insert characters on one of these lines in the Log window and
press Enter to display the modified text on the command line, for example:

SET QUALIFY CU "DD:LIBRARY.NAME(READTOKN.C)";

and then press Enter to issue the command. Overtyping of a line in the Log
window and issuing them as commands is a way to save keystrokes and errors in
long commands.

Pressing LIST (PF4) with the cursor on the command line brings up the Source
Identification Panel, where associations are made between source listings or source
files shown in the source Window and their compile units. Overtype the
Listings/Source File field with the new name.

Chapter 4. Debugging Your Programs in Full-Screen Mode 55

Basic Tasks of Debug Tool

Displaying the Halted Location
After displaying different source files and scrolling, you can go back to the halted
execution point by entering the following command:

SET QUALIFY RESET

Setting a Line Breakpoint
Pressing AT/CLEAR (PF6) when the cursor is over a particular executable line in
the Source window sets or clears a line breakpoint for that line. You can
temporarily 'turn them off' with DISABLE and back on with ENABLE.

Stepping through or Running Your Program.

When Debug Tool comes up, none of your program has run yet.

Pressing STEP (PF2) runs your program, halting on the next hook encountered. If
you compiled with TEST for C, or TEST(ALL,SYM) for COBOL or PL/l, STEP
performs one statement.

Pressing GO (PF9) runs your program until a breakpoint is reached, the program
ends, or a condition is raised.

Note: A condition being raised is determined by the setting of the run-time TEST
suboption test_Tevel.

If your program calls a function (or procedure or subroutine), you can use the STEP
OVER command to run the called function without stepping into it; that is, the
function is executed without intervention from Debug Tool. If you accidentally step
into a function when you meant to step over it, issue the STEP RETURN command
which steps to the return point (just after the call point). See ['STEP_Command” on|

for more details on this command.

Displaying a Variable's Value
To list the contents of a single variable, move the cursor to an occurrence of the
variable name in the Source window and press LIST (PF4). The value of the
variable is displayed in the Log window.

Continuously Displaying a Variable's Value
To continuously display or monitor a variables value, you can issue most LIST
commands preceded by the word MONITOR. For example, enter:

MONITOR LIST num ;

the output for this command, in this case the contents of variable NUM, is
continuously displayed in the Monitor window. The MONITOR command makes it
easy to watch values while stepping through your program.

Setting a PF Key

Suppose you want to set PF9 to be the STEP OVER command with the message
STEPOVER appearing under the PF9. key. You do it by entering:

SET PF9 "STEPOVER" = STEP OVER;

56 Debug Tool/VSE V1R1 User's Guide and Reference

Using a C Program to Demonstrate Debug Tool

Error Numbers for Messages in the log Window

When an error message shows up in the Log window, you can also get the
message ID number to show up as

EQA1807E The command element d is ambiguous.
instead of

The command element d is ambiguous.

by modifying your profile. Use the PANEL PROFILE command and set SHOW
MESSAGE ID NUMBERS to YES by overtyping.

For error message descriptions see [Appendix F, “Debug Tool Messages” on|

Finding a Renamed Source File Using Debug Tool

The name of the current source (or listing) file may have been changed since the
program was compiled.

Pressing LIST (PF4) with the cursor on the command line brings up the Source
Identification Panel, where associations are made between source listings or source
files shown in the Source window and their compile units. Overtype the
Listing/Source file field with the new name. If you need to do this repeatedly, note
the SET SOURCE ON commands generated in the Log window. You can save
these commands in a file and reissue them with the USE command for future
invocations of Debug Tool.

Using a C Program to Demonstrate a Debug Tool Session

This section uses the information given thus far on Debug Tool's basic tasks and
shows you how to apply them to your C applications by using an example C
program (CALC) to demonstrate how they're used.

The CALC program is referred to in the following C Tasks section. It is a simple
calculator which reads its input from a character buffer. If integers are read they
are pushed on a stack. If one of the operators + - * / is read, the top two elements
are popped off the stack, the operation is performed on them and the result is
pushed on the stack. The = operator writes out the value of the top element of the
stack to a buffer.

You can find the source for the following sample programs in the sublibrary
member EQAWUGH1.Z in the Debug Tool installation sublibrary.

Chapter 4. Debugging Your Programs in Full-Screen Mode 57

Using a C Program to Demonstrate Debug Tool

/* Header file for CALC.C PUSHPOP.C READTOKN.C
/* a simple calculator

typedef enum toks {
T_INTEGER,
T_PLUS,
T_TIMES,
T_MINUS,
T _DIVIDE,
T_EQUALS,
T_STOP
} Token;
Token read_token(char buf[]);
typedef struct int_link {
struct int_Tink * next;
int i;
} IntLink;
typedef struct int_stack {
IntLink * top;
} IntStack;
extern void push(IntStack *, int);
extern int pop(IntStack *);

*/
*/
*/
*/

Figure 5. Sample C Program - Header File CALC.H

/* A simple calculator which does operations on integers which
/* are pushed and popped on a stack

#include <stdio.h>
#include <stdlib.h>
#include "calc.h"
IntStack stack = { 0 };
main()
{

Token tok;

char word[100];

char buf_out[100];

int num;

for(;s)

{

tok=read_token(word) ;
switch(tok)
{

*/
*/
*/
*/

Figure 6 (Part 1 of 2). Sample C Program - main() Function

Debug Tool/VSE V1R1 User's Guide and Reference

Using a C Program to Demonstrate Debug Tool

case T_STOP:
break;

case T_INTEGER:
num = atoi(word);
push (&stack,num); e statement =/
break;

case T_PLUS:
push(&stack, pop(&stack)+pop(&stack));
break;

case T_MINUS:
num = pop(&stack);
push(&stack, pop(&stack)-num);
break;

case T_TIMES:
push(&stack, pop(&stack)*pop(&stack));
break;

case T_DIVIDE:
num = pop(&stack);
push(&stack, pop(&stack)/num); /* statement */
break;

case T_EQUALS:
num = pop(&stack);
sprintf(buf_out,"= %d ",num);
push(&stack,num);
break;

}
if (tok==T_STOP)
break;
}

return 0;

}

Figure 6 (Part 2 of 2). Sample C Program - main() Function

Chapter 4. Debugging Your Programs in Full-Screen Mode 59

Using a C Program to Demonstrate Debug Tool

60

Y T— FILE PUSHPOP.C ====== == == mm oo oo oo */
/* */
/* A push and pop function for a stack of integers */
ey */
#include <stdlib.h>
#include "calc.h"
S S S U S S S S S S ST S */
/* input: stk - stack of integers */
/* num - value to push on the stack */
/* action: get a link to hold the pushed value, push Tink on stack x/
/% */
extern void push(IntStack * stk, int num)
{

IntLink * ptr;

ptr = (IntLink *) malloc(sizeof(IntLink)); /* */

ptr->i = num; e statement */

ptr->next = stk->top;

stk->top = ptr;
}
gy */
/* return: int value popped from stack */
/* action: pops top element from stack and gets return value from it =*/
gy */
extern int pop(IntStack * stk)
{

IntLink * ptr;

int num;

ptr = stk->top;

num = ptr->i;

stk->top = ptr->next;

free(ptr);

return num;
}
Figure 7. Sample C Program - push() and pop() Functions
YR Ta— FILE READTOKN.C === === oo oo oo oo oo */
/% x/
/* A function to read input and tokenize it for a simple calculator =*/
/2y */
#include <ctype.h>
#include <stdio.h>
#include "calc.h"
/2y */
/* action: get next input char, update index for next call */
/* return: next input char */

Figure 8 (Part 1 of 2). Sample C Program - read_token() Function

Debug Tool/VSE V1R1 User's Guide and Reference

Using a C Program to Demonstrate Debug Tool

gy
static char nextchar(void)
{
gy
/* input action:
/* 2 push 2 on stack
/* 18 push 18
/* + pop 2, pop 18, add, push result (20)
/* = output value on the top of the stack (20)
[* 5 push 5
/* / pop 5, pop 20, divide, push result (4)
/* = output value on the top of the stack (4)
Ty
char * buf_in ="218+=5/=";
static int index; /* starts at 0 =/
char ret;
ret = buf_in[index];
++index;
return ret;
1
e L

/* output: buf - null terminated token
/* return: token type
/* action: reads chars through nextchar() and tokenizes them

Token read_token(char buf[])
{
int i;
char c;
/* skip leading white space */
for(c=nextchar();
isspace(c);
c=nextchar())

buf[0] = c¢; /* get ready to return single char e.g. "+" %/
buf[1] = 0;
switch(c)
{
case '+' : return T_PLUS;
case '-' : return T_MINUS;
case '*' : return T_TIMES;
case '/' : return T_DIVIDE;
case '=' : return T_EQUALS;
default:
i=0;
while (isdigit(c)) {
buf[i++] = c;
¢ = nextchar();
}
buf[i] = 03
if (i==0)
return T_STOP;
else
return T_INTEGER;
}
1

Figure 8 (Part 2 of 2). Sample C Program - read_token() Function

Chapter 4. Debugging Your Programs in Full-Screen Mode

61

Using a C Program to Demonstrate Debug Tool

C Tasks

The following sections identify typical tasks you might want to perform while using
Debug Tool with your C program and explain how to accomplish these tasks. The
CALC program is used to demonstrate some of these actions.

Setting a Breakpoint to Halt when Certain Functions Are Called
To halt just before read_token is called, issue the command:

AT CALL read_token ;

To halt just after read_token is called, issue the command:
AT ENTRY read_token ;

To take advantage of either of the above actions, you must compile your program
with the compile-time TEST option.

Note: If you have many breakpoints set in your program you can issue the
command

QUERY LOCATION

to indicate where in your program execution has been interrupted.

Modifying the Value of a Variable

To list the contents of a single variable, move the cursor to an occurrence of the
variable name in the Source window and press LIST (PF4). The value is displayed
in the Log window. This is equivalent to entering LIST TITLED variable on the
command line. For instance, run the CALC program and, using STEP (PF2), step
through the program to the statement labeled [JYX§]. Move the cursor over num
and press LIST (PF4). The following appears in the Log window:

LIST (num) ;
num = 2

To modify the value of num to 22, overtype the num = 2 line to num = 22, press Enter
to put it on the command line, and press Enter again to issue the command.

You can enter most C expressions on the command line.

Now step into the call to push() by pressing STEP (PF2) and step until the
statement labeled PUSHPOP2 is reached. To view the attributes of variable ptr,
issue the Debug Tool command:

DESCRIBE ATTRIBUTES =*ptr;

The result in the Log window is:

ATTRIBUTES for * ptr
struct int_Tink {
struct int_Tink *next;
signed int 1i;

}

You can use this action as a simple browser for structures and unions.

62 Debug Tool/VSE V1R1 User's Guide and Reference

Using a C Program to Demonstrate Debug Tool

You can list all the values of the members of the structure pointed to by ptr with
the command:

LIST *ptr ;

with results in the Log window appearing something like this:
LIST * ptr ;

(* ptr).next = 0x0

(* ptr).i =0

You can change the value of a structure member by issuing the assignment as a
command as in the following example:

(* ptr).i = 33 ;

Stopping on a Line Only if a Condition Is True

Often a particular part of your program works fine for the first few thousand times,
but it fails under certain conditions. You don't want to set a simple line breakpoint
because you will have to keep entering GO. For example, in main you want to stop
at T_DIVIDE only if the divisor is O (before the exception occurs). Set the
breakpoint like this:

AT 39 { if(num != 0) GO; }

Line 39 is the statement labeled [41X¥4. The command will cause Debug Tool to
stop at line 39. If the value of num is not 0, the program will continue. The
command causes Debug Tool to stop on line 39 only if the value of num is 0.

Debugging When Only a Few Parts Are Compiled with TEST
Suppose you want to set a breakpoint at entry to function push() in file
PUSHPOP.C. PUSHPOP.C has been compiled with TEST but the other files have
not. Debug Tool comes up with an empty Source window. To display the
compilation units, enter the command:

LIST NAMES CUS

The LIST NAMES CUS command displays a list of all the compile units that are
known to Debug Tool.

When specifying compile units to Debug Tool you need to specify them in exactly
the same format as Debug Tool displays them, however, if the name contains
special characters, such as colons (:), you must enclose the name in double quotes
("). For example, if in response to the LIST NAMES CUS command Debug Tool
displays the name for the compile unit PUSHPOP as
DD:LIBRARY.NAME(PUSHPOP.C) you must enter the name as
"DD:LIBRARY.NAME(PUSHPOP.C)".

Note: If the name appears in the Log window you can modify the line in the log
and press Enter to put it on the command line.

If PUSHPORP is fetched later on by the application, this compile unit might not be
known to Debug Tool. If it is displayed, enter:

SET QUALIFY CU PUSHPOP
AT ENTRY push;

GO ;

or

AT ENTRY PUSHPOP:>push
GO;

Chapter 4. Debugging Your Programs in Full-Screen Mode 63

Using a C Program to Demonstrate Debug Tool

64

If it is not displayed, set an appearance breakpoint as follows:
AT APPEARANCE PUSHPOP ;

GO ;

You can also combine the breakpoints as follows:

AT APPEARANCE PUSHPOP AT ENTRY push; GO;

The only purpose for this APPEARANCE breakpoint is to gain control the first time
a function in the PUSHPOP compilation unit is run. When that happens, you can
set a breakpoint at entry to push() like this:

AT ENTRY push;

Capturing Output to stdout
To redirect stdout to the Log window, issue the following command:

SET INTERCEPT ON FILE stdout ;

With this set, you will capture not only stdout from your program, but also from
interactive function calls. For example, you can interactively call printf on the
command line to display a null terminated string by entering:

printf(sptr);

You might find this easier than using LIST STORAGE.

Invoking Interactive Function Calls

You can invoke a library function (such as strlen) or one of the program functions
interactively by calling it on the command line. In the next example, we call push()
interactively to push one more value on the stack just before a value is popped off.
AT CALL pop ;

GO ;

push(77);

GO ;

The calculator will produce different results than before because of the additional
value pushed on the stack.

Displaying Raw Storage

A char * variable ptr can point to a piece of storage containing printable
characters. To display the first 20 characters enter:

LIST STORAGE (*ptr,20)

If the string is null terminated, you can also use an interactive function call on the
command line, as in:

puts(ptr) ;

Getting a Function Traceback

Often when you get close to a programming error, you want to know how you got
into that situation, and especially what the traceback of calling functions is. To get
this information, issue the command:

LIST CALLS ;

Debug Tool/VSE V1R1 User's Guide and Reference

Using a C Program to Demonstrate Debug Tool

For example, if you run the CALC example with the commands:
AT ENTRY read_token ;

GO ;

LIST CALLS ;

the log will contain something like:

At ENTRY in C function READTOKN :> read_token.
From LINE 18 in C function CALC :> main :> %BLOCK2.

which shows the traceback of callers.

Tracing the Run-Time Path for Code Compiled with TEST
To trace a program showing the entry and exit without requiring any changes to the
program, place the following Debug Tool commands in a file and USE them when
Debug Tool initially displays your program. Assuming you have a member of a
sublibrary, (STDOUT.CTRACE), that contains the following Debug Tool commands:
int indent;
indent = 0;
SET INTERCEPT ON FILE stdout;
AT ENTRY = { \

++indent; \

if (indent < 0) indent = 0; \

printf("%+.s>%s\n", indent, " ", %block); \
GO; \

}

AT EXIT = {\
if (indent < 0) indent = 0; \
printf("%x.s<%s\n", indent, " ", %block); \
--indent; \
GO; \

}

You can use this file as the source of commands to Debug Tool by entering the
following command:

USE (STDOUT.CTRACE)

If, after executing the USE file, you run the program listed below:
int foo(int i, int j) {

return i+j;
}

int main(void) {
return foo(1,2);
1

the following trace is displayed in the Log window:

stdout: >main
stdout: >foo
stdout: <foo
stdout: >main

If you do not want to create the USE file, you can enter the commands through the
command line, and the same effect is achieved.

Chapter 4. Debugging Your Programs in Full-Screen Mode 65

Using a C Program to Demonstrate Debug Tool

66

Finding Unexpected Storage Overwrite Errors

During program run time, some storage might unexpectedly change its value and
you want to find out when and where this happened. Consider this example where
function set_i changes more than the caller expects it to change.

struct s { int i; int js};
struct s a=1{0, 0 };

/* function sets only field i */
void set_i(struct s * p, int k)

ks
k; /* error, it unexpectedly sets field j also */

o
1
\%
—_
o

main() {
set_i(&a,123);
}

Find the address of a with the command
LIST &(a.j) ;

Suppose the result is 0x7042A04. To set a breakpoint which watches for a change
in storage values starting at that address for the next 4 bytes, issue the command

AT CHANGE %STORAGE (0x7042A04,4)

When the program is run, Debug Tool will halt if the value in this storage changes.

Finding Uninitialized Storage Errors
To help find your uninitialized storage errors, run your program with the Language
Environment run-time TEST and STORAGE options. In the following example:

// EXEC CALC,PARM='TEST(,,,MFI%Tuname:) STORAGE(FD,FB,F9)"

the first subparameter of STORAGE is the fill byte for storage allocated from the
heap. For example, storage allocated through malloc() is filled with the byte
OxFD. If you see this byte repeated through storage, it is likely uninitialized heap
storage.

The second subparameter of STORAGE is the fill byte for storage allocated from
the heap but then freed. For example, storage freed by calling free() might be
filled with the byte OxFB. If you see this byte repeated through storage, it is likely
storage that was allocated on the heap, but has been freed.

The third subparameter of STORAGE is the fill byte for auto storage variables in a
new stack frame. If you see this byte repeated through storage, it is likely
uninitialized auto storage. The values chosen here are odd and large, to maximize
early problem detection. For example, if you attempt to branch to an odd address
you will get an exception immediately.

Debug Tool/VSE V1R1 User's Guide and Reference

Using a COBOL Program to Demonstrate Debug Tool

As an example of uninitialized heap storage, run program CALC with the run-time
STORAGE option as STORAGE(FD,FB,F9), to the line labeled PUSHPOP2 and
issue the command:

LIST #ptr ;

You will see the byte fill for uninitialized heap storage as the following example
shows:

LIST = ptr ;

(* ptr).next = OxFDFDFDFD

(* ptr).i = -33686019

Setting a Breakpoint to Halt before Calling a NULL Function
Calling an undefined function or calling a function through a function pointer which
points to NULL is a severe error. To halt just before such a call is run, set this
breakpoint:

AT CALL O
When Debug Tool stops at this breakpoint, you can bypass the CALL by entering

the GO BYPASS command. This allows you to continue your debugging session
without raising a condition.

Using a COBOL Program to Demonstrate a Debug Tool Session

This section uses the information given thus far on Debug Tool's basic tasks and
shows you how to apply them to your COBOL applications by using an example
COBOL program (COBCALC) to demonstrate how they're used.

The COBCALC program is referred to in|“COBOL Tasks” on page 71| Itisa
simple program which reads its input from the system console. The program calls
a number of sub-programs to calculate a loan payment amount or the future value
of a series of cash flows by utilizing several COBOL built-in functions.

You can find the source for the following sample programs in the sublibrary
member EQAWUGC1.Z in the Debug Tool installation sublibrary.

khkAkhhhhhhhhhhkdhhhhhhhdrhdhhhhhdhhdrhdhhhdhhhdhrhdhhhhhhrddxd
* FILE COBCALC.COBOL

*

* A simple program which allows financial functions to

* be performed using intrinsic functions.
*

* %k X X %

ek ek o ko ko ok ko ok o ko ko ko ko ok ko ok ko ko ok ko ok ko ok o ok o ko ok ko
IDENTIFICATION DIVISION.
PROGRAM-ID. COBCALC.
ENVIRONMENT DIVISION.

Figure 9 (Part 1 of 2). Sample COBOL Program - Main Program COBCALC

Chapter 4. Debugging Your Programs in Full-Screen Mode 67

Using a COBOL Program to Demonstrate Debug Tool

DATA DIVISION.
WORKING-STORAGE SECTION.

01 PARM-1.
02 CALL-FEEDBACK PIC XX.
01 FIELDS.
02 INPUT-1 PIC X(40).

PROCEDURE DIVISION.
DISPLAY "CALC Begins. Enter END to terminate."
UPON CONSOLE.
MOVE " " TO INPUT-1.
* Keep accepting data until END requested
PERFORM ACCEPT-INPUT UNTIL INPUT-1 EQUAL TO "END".
* END requested
DISPLAY "END requested." UPON CONSOLE
DISPLAY "CALC Ends." UPON CONSOLE.
GOBACK.
End of program.

Accept input

ACCEPT-INPUT.
DISPLAY "Functions are: END, LOAN, or PVALUE."
UPON CONSOLE.
ACCEPT INPUT-1 FROM CONSOLE.
* Allow user to enter UPPER or Tlower case data
EVALUATE FUNCTION UPPER-CASE(INPUT-1)
WHEN "END"
MOVE "END" TO INPUT-1
WHEN "LOAN"
PERFORM CALCULATE-LOAN
WHEN "PVALUE"
PERFORM CALCULATE-VALUE
WHEN OTHER
DISPLAY "Invalid input: " INPUT-1 UPON CONSOLE
END-EVALUATE.

*

* Calculate Loan via CALL to subprogram
*
CALCULATE-LOAN.
CALL "COBLOAN" USING CALL-FEEDBACK.
IF CALL-FEEDBACK IS NOT EQUAL "OK" THEN
DISPLAY "Call to COBLOAN Unsuccessful." UPON CONSOLE.

*

* Calculate Present Value via CALL to subprogram
*
CALCULATE-VALUE.
CALL "COBVALU" USING CALL-FEEDBACK.
IF CALL-FEEDBACK IS NOT EQUAL "OK" THEN
DISPLAY "Call to COBVALU Unsuccessful." UPON CONSOLE.

Figure 9 (Part 2 of 2). Sample COBOL Program - Main Program COBCALC

68 Debug Tool/VSE V1R1 User's Guide and Reference

Using a COBOL Program to Demonstrate Debug Tool

B R S R R

* FILE COBLOAN.COBOL *
* *
* A simple subprogram which calculates payment amount *
* for a loan. *
* *
khkkkkhkkkkhkhkkhhhkhhkkhhhhhhdhhhhhdhhhdhhdhhdhhdhhdrhdhkhhhhhhkddxxkx
IDENTIFICATION DIVISION.
PROGRAM-ID. COBLOAN.
ENVIRONMENT DIVISION.
DATA DIVISION.
WORKING-STORAGE SECTION.
01 FIELDS.
02 INPUT-1 PIC X(26).
02 PAYMENT PIC S9(9)V99 USAGE COMP.
02 PAYMENT-OUT PIC $$$$,$$%5,$$9.99 USAGE DISPLAY.
02 LOAN-AMOUNT PIC S9(7)V99 USAGE COMP.
02 LOAN-AMOUNT-IN PIC X(16).
02 INTEREST-IN PIC X(5).
02 INTEREST PIC S9(3)V99 USAGE COMP.

02 NO-OF-PERIODS-IN PIC X(3).
02 NO-OF-PERIODS PIC 99 USAGE COMP.
LINKAGE SECTION.
01 PARM-1.
02 CALL-FEEDBACK PIC XX.
PROCEDURE DIVISION USING PARM-1.
MOVE "NO" TO CALL-FEEDBACK.
DISPLAY "Enter Loan Amount, Interest and Number of Months sep
- "arated by spaces" UPON CONSOLE.
ACCEPT INPUT-1 FROM CONSOLE.
UNSTRING INPUT-1 DELIMITED BY ALL " "
INTO LOAN-AMOUNT-IN INTEREST-IN NO-OF-PERIODS-IN.
Convert to numeric values
COMPUTE LOAN-AMOUNT = FUNCTION NUMVAL(LOAN-AMOUNT-IN).
COMPUTE INTEREST = FUNCTION NUMVAL(INTEREST-IN).
COMPUTE NO-OF-PERIODS = FUNCTION NUMVAL(NO-OF-PERIODS-IN).
Calculate annuity amount required
COMPUTE PAYMENT = LOAN-AMOUNT * FUNCTION ANNUITY((
INTEREST / 12) NO-OF-PERIODS).
Make it presentable
MOVE PAYMENT TO PAYMENT-OUT.
DISPLAY "Repayment Amount is: " PAYMENT-OUT UPON CONSOLE.
MOVE "OK" TO CALL-FEEDBACK.
GOBACK.

*

*

*

Figure 10. Sample COBOL Program - Subroutine COBLOAN

Chapter 4. Debugging Your Programs in Full-Screen Mode 69

Using a COBOL Program to Demonstrate Debug Tool

B R S R

* FILE COBVALU.COBOL *
* *
* A simple subprogram which calculates present value *
* for a series of cash flows. *
* *
khkkkkhkkkkhkhhkhhkkhhhhhhdhhhhhhhhdhhhdhhdhhdhhhdhrhdxhhhdhkkddxxkx
IDENTIFICATION DIVISION.
PROGRAM-ID. COBVALU.
ENVIRONMENT DIVISION.
DATA DIVISION.
WORKING-STORAGE SECTION.
01 CHAR-DATA.
02 INPUT-1 PIC X(10).
02 PAYMENT-OUT PIC $$$$,$$$,$$9.99 USAGE DISPLAY.
02 INTEREST-IN PIC X(5).
02 NO-OF-PERIODS-IN PIC X(3).
01 NUM-DATA.
02 PAYMENT PIC S9(9)V99 USAGE COMP.
02 INTEREST PIC S9(3)V99 USAGE COMP.
02 COUNTER PIC 99 USAGE COMP.
02 NO-OF-PERIODS PIC 99 USAGE COMP.
02 VALUE-AMOUNT OCCURS 99 PIC S9(7)V99 COMP.
LINKAGE SECTION.
01 PARM-1.

02 CALL-FEEDBACK PIC XX.
PROCEDURE DIVISION USING PARM-1.
MOVE "NO" TO CALL-FEEDBACK.
DISPLAY "Enter Interest (Discount) Rate and Number of Periods
- " separated by spaces." UPON CONSOLE.
ACCEPT INPUT-1 FROM CONSOLE.
UNSTRING INPUT-1 DELIMITED BY "," OR ALL " "
INTO INTEREST-IN NO-OF-PERIODS-IN.
* Convert to numeric values
COMPUTE INTEREST = FUNCTION NUMVAL(INTEREST-IN).
COMPUTE NO-OF-PERIODS = FUNCTION NUMVAL(NO-OF-PERIODS-IN).
Get cash flows
PERFORM GET-AMOUNTS VARYING COUNTER FROM 1 BY 1 UNTIL
COUNTER IS GREATER THAN NO-OF-PERIODS.
Calculate present value
COMPUTE PAYMENT = FUNCTION PRESENT-VALUE(INTEREST
VALUE-AMOUNT (ALL)).
* Make it presentable
MOVE PAYMENT TO PAYMENT-OUT.
DISPLAY "Present Value is: " PAYMENT-OUT UPON CONSOLE.
MOVE "OK" TO CALL-FEEDBACK.
GOBACK.

*

*

Get cash flows for each period

* % X

GET-AMOUNTS.
DISPLAY "Enter Value for period " COUNTER UPON CONSOLE.
ACCEPT INPUT-1 FROM CONSOLE.
COMPUTE VALUE-AMOUNT (COUNTER) = FUNCTION NUMVAL(INPUT-1).

Figure 11. Sample COBOL Program - Subroutine COBVALU

70 Debug Tool/VSE V1R1 User's Guide and Reference

COBOL Tasks

Using a COBOL Program to Demonstrate Debug Tool

The following sections identify typical tasks you might want to perform while using
Debug Tool with your COBOL program and explain how to accomplish these tasks.
The COBCALC program is used to demonstrate some of these actions.

Capturing 1/O to the System Console
To redirect output that would normally appear on the System Console to your
Debug Tool terminal, enter the following command:

SET INTERCEPT ON CONSOLE ;

This command will not only capture output directed to the System Console, but will
also allow you to input data from your Debug Tool terminal instead of the System
Console by using the Debug Tool INPUT command. For example, if you run
COBCALC and issue the Debug Tool SET INTERCEPT ON CONSOLE command,
followed by the GO command, you will see the following output displayed in the
Debug Tool Log:

CONSOLE : CALC Begins. Enter END to terminate.

CONSOLE : Functions are: END, LOAN, or PVALUE.

CONSOLE : IGZOOOOI AWAITING REPLY

THE PROGRAM IS WAITING FOR INPUT FROM CONSOLE
USE THE INPUT COMMAND TO ENTER 114 CHARACTERS FOR THE INTERCEPTED FIXED-FORMAT FILE.

You can then continue execution by replying to the input request by entering the

following Debug Tool command:

INPUT some data ;

Note: Whenever Debug Tool intercepts System Console I/O, and for the duration
of the intercept, the display in the Source window is empty, and the

Location field in the session panel header at the top of the screen shows
UNKNOWN.

Setting a Breakpoint to Halt when Certain Functions Are Called
To halt just before COBLOAN is called, issue the command:

AT CALL COBLOAN ;

If the CU COBVALU is known to Debug Tool (it has previously been called), to halt
just after COBVALU is called, issue the command:

AT ENTRY COBVALU ;

If the CU COBVALU is not known to Debug Tool (it has not previously been called), to
halt just before COBVALU is entered the first time, issue the command:

AT APPEARANCE COBVALU ;
To take advantage of either of the above actions, you must compile your program
with the compile-time TEST option.

Note: If you have many breakpoints set in your program you can issue the
command

QUERY LOCATION

to indicate where in your program execution has been interrupted.

Chapter 4. Debugging Your Programs in Full-Screen Mode 71

Using a COBOL Program to Demonstrate Debug Tool

72

Modifying the Value of a Variable

To list the contents of a single variable, move the cursor to an occurrence of the
variable name in the Source window and press LIST (PF4). The value is displayed
in the Log window. This is equivalent to entering LIST TITLED variable on the
command line. For instance, run the COBCALC program to the statement labeled
XX . Remember to reply to the program's input request by using the INPUT
command. Move the cursor over INPUT-1 and press LIST (PF4). The following
appears in the Log window:

LIST (INPUT-1) ;
INPUT-1 = 'some data !

To modify the value of INPUT-1 enter the command:
MOVE 'pvalue' to INPUT-1 ;

on the command line.
You can enter most COBOL expressions on the command line.

Now step into the call to COBVALU by pressing STEP (PF2) and step until the
statement labeled is reached. (Respond to the message COBVALU issues
by using the INPUT command to enter an interest rate followed by a number of
periods). To view the attributes of variable INTEREST, issue the Debug Tool
command:

DESCRIBE ATTRIBUTES INTEREST ;

The result in the Log window is:

ATTRIBUTES FOR INTEREST
ITS LENGTH IS 4
ITS ADDRESS IS 00527008
02 COBVALU:>INTEREST S999v99 COMP

You can use this action as a simple browser for group items and data hierarchies.

For example, you can list all the values of the elementary items for the
CHAR-DATA group with the command:

LIST CHAR-DATA ;

with results in the Log window appearing something like this:

LIST CHAR-DATA ;
02 COBVALU:>INPUT-1 of 01 COBVALU:>CHAR-DATA = '.12 5 '
INVALID DATA FOR 02 COBVALU:>PAYMENT-OUT of 01 COBVALU:>CHAR-DATA IS FOUND.
02 COBVALU:>INTEREST-IN of 01 COBVALU:>CHAR-DATA = '.12 '
02 COBVALU:>NO-OF-PERIODS-IN of 01 COBVALU:>CHAR-DATA = '5 '

Note: If you use the LIST command to list the contents of an uninitialized variable,
or a variable that contains invalid data, Debug Tool will display INVALID DATA.

Stopping on a Line Only if a Condition Is True

Often a particular part of your program works fine for the first few thousand times,
but it fails under certain conditions. You don't want to set a simple line breakpoint
because you will have to keep entering GO. For example, in COBVALU you want
to stop at the calculation of present value only if the discount rate is less than -1
(before the exception occurs). Set the breakpoint like this:

AT 41 IF INTEREST > -1 THEN GO ; END-IF ;

Debug Tool/VSE V1R1 User's Guide and Reference

Using a COBOL Program to Demonstrate Debug Tool

Line 41 is the statement labeled fIMIA. The command will cause Debug Tool to
stop at line 41. If the value of INTEREST is greater than -1, the program will
continue. The command causes Debug Tool to remain on line 41 only if the value
of INTEREST is less than or equal to -1.

Debugging When Only a Few Parts Are Compiled with TEST
Suppose you want to set a breakpoint at entry to function COBVALU. COBVALU
has been compiled with TEST but the other files have not. Debug Tool comes up
with an empty Source window. To display the compilation units, enter the
command:

LIST NAMES CUS

The LIST NAMES CUS command displays a list of all the compile units that are
known to Debug Tool. If COBVALU is fetched later on by the application, this
compile unit might not be known to Debug Tool. If it is displayed, enter:

SET QUALIFY CU COBVALU

AT ENTRY COBVALU;

GO ;

If it is not displayed, set an appearance breakpoint as follows:
AT APPEARANCE COBVALU ;

GO ;

You can also combine the breakpoints as follows:

AT APPEARANCE COBVALU AT ENTRY COBVALU; GO;

The only purpose for the APPEARANCE breakpoint is to gain control the first time
a function in the COBVALU compilation unit is run.

Displaying Raw Storage

You can display the storage for a variable by using the LIST STORAGE command.
For example, to display the storage for the first 30 characters of CHAR-DATA
enter:

LIST STORAGE(CHAR-DATA,30)

Getting a Function Traceback

Often when you get close to a programming error, you want to know how you got
into that situation, and especially what the traceback of calling functions is. To get
this information, issue the command:

LIST CALLS ;

Chapter 4. Debugging Your Programs in Full-Screen Mode 73

Using a COBOL Program to Demonstrate Debug Tool

For example, if you run the COBCALC example with the commands:

AT APPEARANCE COBVALU AT ENTRY COBVALU;
GO;

INPUT pvalue;

GO;

LIST CALLS;

the log will contain something like:

AT APPEARANCE COBVALU
AT ENTRY COBVALU ;

GO ;
CONSOLE : CALC Begins. Enter END to terminate.
CONSOLE : Functions are: END, LOAN, or PVALUE.
CONSOLE : IGZOOOOI AWAITING REPLY
THE PROGRAM IS WAITING FOR INPUT FROM CONSOLE
USE THE INPUT COMMAND TO ENTER 114 CHARACTERS FOR THE INTERCEPTED FIXED-FORMAT FILE.
INPUT pvalue ;

GO ;

LIST CALLS ;
At ENTRY IN COBOL program COBVALU.

From LINE 57.1 IN COBOL program COBCALC.

which shows the traceback of callers.

Tracing the Run-Time Path for Code Compiled with TEST

To trace a program showing the entry and exit without requiring any changes to the
program, place the following Debug Tool commands in a file and USE them when
Debug Tool initially displays your program. Assuming you have a member of a
sublibrary, CALLS.COBTRC, that contains the following Debug Tool commands:

* Commands in a COBOL USE file must be coded in columns 8-72.
* [f necessary, commands can be continued by coding a '-' in
* column 7 of the continuation Tine.
01 LEVEL PIC 99 USAGE COMP;
MOVE 1 TO LEVEL;
AT ENTRY = PERFORM;
COMPUTE LEVEL = LEVEL + 1;
LIST ("Entry:", LEVEL, %CU);
GO;
END-PERFORM;
AT EXIT * PERFORM;
LIST ("Exit:", LEVEL);
COMPUTE LEVEL = LEVEL - 1;
GO;
END-PERFORM;

You can use this file as the source of commands to Debug Tool by entering the
following command:

USE (CALLS.COBTRC)

74 Debug Tool/VSE V1R1 User's Guide and Reference

Using a COBOL Program to Demonstrate Debug Tool

If, after executing the USE file, you run the following program sequence:
COBMAIN:

CALL "CoBSuB"

COBSUB:

CALL "COBSUB2".
GOBACK.

COBSUB2:

GOBACK.

the following trace, or something similar, is displayed in in the Log window:

Entry:

LEVEL = 00002
%CU = COBSUB
Entry:

LEVEL = 00003
%CU = COBSUB2

Exit:
LEVEL = 00003
Exit:
LEVEL = 00002

If you do not want to create the USE file, you can enter the commands through the
command line, and the same effect is achieved.

Finding Unexpected Storage Overwrite Errors

During program run time, some storage might unexpectedly change its value and
you want to find out when and where this happened. Consider this example where
the program changes more than the caller expects it to change.

02 FIELD-1 PIC X(8) OCCURS 2.
02 FIELD-2 PIC X(8)
PROCEDURE DIVISION.
* (An invalid index value is set)

MOVE 3 TO CTR.
MOVE "TOO MUCH" TO FIELD-1(CTR).

Find the address of FIELD-2 with the command
DESCRIBE ATTRIBUTES FIELD-2

Suppose the result is X'00521D42"'. To set a breakpoint which watches for a
change in storage values starting at that address for the next 8 bytes, issue the
command

AT CHANGE %STORAGE(H'00521D42',8)

When the program is run, Debug Tool will halt if the value in this storage changes.

Chapter 4. Debugging Your Programs in Full-Screen Mode 75

Using a PL/I Program to Demonstrate Debug Tool

Setting a Breakpoint to Halt before Calling an invalid Program
Calling an undefined program is a severe error. If you have developed a main
program which calls a subprogram which doesn't exist, you can cause Debug Tool
to halt just before such a call. For example, if the subprogram NOTYET doesn't
exist you can set the breakpoint:

AT CALL (NOTYET)
When Debug Tool stops at this breakpoint, you can bypass the CALL by entering

the GO BYPASS command. This allows you to continue your debugging session
without raising a condition.

Using a PL/I Program to Demonstrate a Debug Tool Session

This section uses the information given thus far on Debug Tool's basic tasks and
shows you how to apply them to your PL/I applications by using an example PL/I
program (PLICALC) to demonstrate how they're used.

The PLICALC program is referred to in [‘PL/| Tasks” on page 80, It is a simple
calculator which reads its input from a character buffer. If integers are read they
are pushed on a stack. If one of the operators + - * / is read, the top two elements
are popped off the stack, the operation is performed on them and the result is
pushed on the stack. The = operator writes out the value of the top element of the
stack to a buffer.

You can find the source for the following sample programs in the sublibrary
member EQAWUGP1.Z in the Debug Tool installation sublibrary.

plicalc: proc options(main);

JETEEE file plicalc.pli=m=m==mmmmmmm oo */
/* */
/* A simple calculator which does operations on integers which */
/* are pushed and popped on a stack */
/% */
2y Sy */

dcl index builtin;

dc1 Tength builting

dc1 substr builting

dcl sysprint print;

dcl 1 stack,
2 stkptr fixed bin(15,0) init(0),
2 stknum(50) fixed bin(31,0);

dcl 1 bufin,
2 bufptr fixed bin(15,0) init(0),
2 bufchr char (100) varying;

dcl 1 tok char (100) varying;

dcl 1 tstop char(l) init ('s');

dcl 1 ndx fixed bin(15,0);

Figure 12 (Part 1 of 2). Sample PL/I Program - Main Program PLICALC

76 Debug Tool/VSE V1R1 User's Guide and Reference

Using a PL/I Program to Demonstrate Debug Tool

dcl
dcl
dcl
dcl
dcl

num fixed bin(31,0);

i fixed bin(31,0);

push entry external;

pop entry returns (fixed bin(31,0)) external;
readtok entry returns (char (100) varying) external;

/* input action:

/*
/*
/*
/*
/*
/*
/*

2 push 2 on stack

18 push 18

+ pop 2, pop 18, add, push result (20)

= output value on the top of the stack (20)
5 push 5

/ pop 5, pop 20, divide, push result (4)

output value on the top of the stack (4)

bufchr = '2 18 + =5 / =';
do while (tok —= tstop);

tok = readtok(bufin);

/* get next 'token' %/

select (tok);

when (tstop)
leave;
when ('+') do;
num = pop(stack);

call push(stack,num); /+ [WIXWY statement */
end;
when ('-') do;

num = pop(stack);
call push(stack,pop(stack)-num);
end;
when ('x')
call push(stack,pop(stack)*pop(stack));
when ('/') do;
num = pop(stack);
call push(stack,pop(stack)/num); /* statement */
end;
when ('=") do;
num = pop(stack);
put skip (num);
call push(stack,num);
end;
otherwise do;/* must be an integer =*/
num = atoi(tok);
call push(stack,num);
end;

end;

end;

return;

*/
*/
*/
*/
*/
*/
*/
*/

Figure 12 (Part 2 of 2). Sample PL/I Program - Main Program PLICALC

Chapter 4. Debugging Your Programs in Full-Screen Mode

77

Using a PL/I Program to Demonstrate Debug Tool

atoi: procedure(tok) returns (fixed bin(31,0));

gy */
/* */
/* convert character string to number */
/* (note: string validated by readtok) */
/* */
J e m e e e e s */
dcl 1 tok char (100) varying;
dcl 1 num fixed bin (31,0);
dc1 1 j fixed bin(15,0);
num = 0;
do j =1 to Tength(tok);
num = (10 * num) + (index('0123456789',substr(tok,j,1))-1);
end;
return (num);
end atoi;
end plicalc;
Figure 13. Sample PL/I Program - TOK Function
push: procedure(stack,num);
JETEEE file push.pli ==c-mmmm ool */
/* */
/* a simple push function for a stack of integers */
/* */
Uy Sy */
dcl 1 stack connected,
2 stkptr fixed bin(15,0),
2 stknum(50) fixed bin(31,0);
dc1 num fixed bin(31,0);
stkptr = stkptr + 1;
stknum(stkptr) = num; /=* statement */
return;
end push;
Figure 14. Sample PL/I Program - PUSH Function
pop: procedure(stack) returns (fixed bin(31,0));
JASEEEE file pop.pli ====mmmmm e */
/* */
/* a simple pop function for a stack of integers */
/* */
2y */

dcl 1 stack connected,
2 stkptr fixed bin(15,0),
2 stknum(50) fixed bin(31,0);

stkptr = stkptr - 1;
return (stknum(stkptr+1));
end pop;

Figure 15. Sample PL/I Program - POP Function

Debug Tool/VSE V1R1 User's Guide and Reference

Using a PL/I Program to Demonstrate Debug Tool

readtok: procedure(bufin) returns (char (100) varying);

[Hmmmm file readtok.pli === mmmm oo oo */
/% */
/* a function to read input and tokenize it for a simple calculator */
/% */
/* action: get next input char, update index for next call */
/* return: next input char(s) */
2y Sy Sy ey, */

dcl Tength builting
dcl substr builting
dcl verify builting
dcl 1 bufin connected,

2 bufptr fixed bin(15,0),

2 bufchr char (100) varying;
dcl 1 tok char (100) varying;
dc1 1 tstop char(l) init ('s');
dc1 1 j fixed bin(15,0);

/* start of processing */

if bufptr > length(bufchr) then do;

tok = tstop;
return (tok);
end;

bufptr = bufptr + 1;

do while (substr(bufchr,bufptr,1) =
bufptr = bufptr + 1;
if bufptr > length(bufchr) then do;

I
~
we

tok = tstop;
return (tok);
end;

end;
tok = substr(bufchr,bufptr,1); /* get ready to return single char */
select (tok);
When (|+|’|_|’|/|’|*|’|:|)
bufptr = bufptr;
otherwise do; /* possibly an integer */
tok = '';
do j = bufptr to length(bufchr);
if verify(substr(bufchr,j,1),'0123456789') == 0 then

leave;
end;
if j > bufptr then do;
j=i-1
tok = substr(bufchr,bufptr, (j-bufptr+l));
bufptr = j;
end;
else
tok = tstop;
end;
end;

return (tok);
end readtok;

Figure 16. Sample PL/I Program - READTOK Function

Chapter 4. Debugging Your Programs in Full-Screen Mode

79

Using a PL/I Program to Demonstrate Debug Tool

PL/I Tasks

The following sections identify typical tasks you might want to perform while using
Debug Tool with your PL/I program and explain how to accomplish these tasks.
The PLICALC program is used to demonstrate some of these actions.

Setting a Breakpoint to Halt when Certain Functions Are Called
To halt just before READTOK is called, issue the command:

AT CALL READTOK ;

To halt just after READTOK is called, issue the command:
AT ENTRY READTOK ;

To take advantage of either of the above actions, you must compile your program
with the compile-time TEST option.

Note: If you have many breakpoints set in your program you can issue the
command

QUERY LOCATION

to indicate where in your program execution has been interrupted.

Modifying the Value of a Variable

To list the contents of a single variable, move the cursor to an occurrence of the
variable name in the Source window and press LIST (PF4). The value is displayed
in the Log window. This is equivalent to entering LIST TITLED variable on the
command line. For instance, run the PLICALC program to the statement labeled
XX . Move the cursor over NUM and press LIST (PF4). The following appears
in the Log window:

LIST NUM ;
NUM = 2

To modify the value of NUM to 22, overtype the NUM = 2 line to NUM = 22, press
Enter to put it on the command line, and press Enter again to issue the command.

You can enter most PL/I expressions on the command line.

Now step into the call to PUSH by pressing STEP (PF2) and step until the
statement labeled is reached. To view the attributes of variable STKNUM,
issue the Debug Tool command:

DESCRIBE ATTRIBUTES STKNUM;

The result in the Log window is:

ATTRIBUTES FOR STKNUM
ITS ADDRESS IS 005C1344 AND ITS LENGTH IS 200
PUSH : STACK.STKNUM(50) FIXED BINARY(31,0) REAL PARAMETER
ITS ADDRESS IS 005C1344 AND ITS LENGTH IS 4

80 Debug Tool/VSE V1R1 User's Guide and Reference

Using a PL/I Program to Demonstrate Debug Tool

You can list all the values of the members of the structure pointed to by STACK
with the command:

LIST STACK;

with results in the Log window appearing something like this:

LIST STACK ;
STACK.STKPTR = 1
STACK.STKNUM(1) = 0
STACK.STKNUM(2) = 6034884
STACK.STKNUM(50) = 6034884

You can change the value of a structure member by issuing the assignment as a
command as in the following example:

STKNUM(STKPTR) = 33;

Stopping on a Line Only if a Condition Is True

Often a particular part of your program works fine for the first few thousand times,
but it fails under certain conditions. You don't want to set a simple line breakpoint
because you will have to keep entering GO. For example, in PLICALC you want to
stop at the division selection only if the divisor is 0 (before the exception occurs).
Set the breakpoint like this:

AT 32 DO; IF NUM —= @ THEN GO; END;
Line 32 is the statement labeled [¥J{®q4. The command will cause Debug Tool to

stop at line 32. If the value of NUM is not 0, the program will continue. The
command causes Debug Tool to stop on line 32 only if the value of NUM is 0.

Debugging When Only a Few Parts Are Compiled with TEST
Suppose you want to set a breakpoint at entry to subroutine PUSH in file
PUSH.LIST. PUSH has been compiled with TEST but the other files have not.
Debug Tool comes up with an empty Source window. To display the compilation
units, enter the command:

LIST NAMES CUS

The LIST NAMES CUS command displays a list of all the compile units that are
known to Debug Tool. If PUSH is fetched later on by the application, this compile
unit might not be known to Debug Tool. If it is displayed, enter:

SET QUALIFY CU PUSH

AT ENTRY PUSH;

GO ;

If it is not displayed, set an appearance breakpoint as follows:
AT APPEARANCE PUSH ;

GO ;

You can also combine the breakpoints as follows:

AT APPEARANCE PUSH AT ENTRY PUSH; GO;

The only purpose for this APPEARANCE breakpoint is to gain control the first time
a function in the PUSH compilation unit is run. When that happens, you can set a
breakpoint at entry to PUSH like this:

AT ENTRY PUSH;

Chapter 4. Debugging Your Programs in Full-Screen Mode 81

Using a PL/I Program to Demonstrate Debug Tool

Displaying Raw Storage
You can display the storage for a variable by using the LIST STORAGE command.
For example, to display the storage for the first 30 characters of STACK enter:

LIST STORAGE(STACK,30)

Getting a Function Traceback

Often when you get close to a programming error, you want to know how you got
into that situation, and especially what the traceback of calling functions is. To get
this information, issue the command:

LIST CALLS ;

For example, if you run the CALC example with the commands:

AT ENTRY READTOK ;
GO ;
LIST CALLS ;

the log will contain something like:

At ENTRY IN PL/I subroutine READTOK.
From LINE 18.1 IN PL/I subroutine PLICALC.

which shows the traceback of callers.

Tracing the Run-Time Path for Code Compiled with TEST

To trace a program showing the entry and exit without requiring any changes to the
program, place the following Debug Tool commands in a file and USE them when
Debug Tool initially displays your program. Assuming you have a member of a
sublibrary, CALL.PLITRC, that contains the following Debug Tool commands:

DCL LVLSTR CHARACTER (50) ;
DCL LVL FIXED BINARY (15) ;
LVL = 0
AT ENTRY =*
DO ;
LVLSTR = ' '
LVL = LVL + 1
SUBSTR (LVLSTR, LVL, 1) = '>' ;
SUBSTR (LVLSTR, LVL + 1, 8) = %CU ;
LIST UNTITLED (LVLSTR) ;
GO ;
END ;
AT EXIT =*
DO ;
SUBSTR (LVLSTR, LVL, 1) = '<!'
SUBSTR (LVLSTR, LVL + 1, 8) = %CU ;
LIST UNTITLED (LVLSTR) ;
LVL = LVL - 1 ;
GO ;
END ;

You can use this file as the source of commands to Debug Tool by entering the
following command:

USE (CALL.PLITRC)

82 Debug Tool/VSE V1R1 User's Guide and Reference

Using a PL/I Program to Demonstrate Debug Tool

If, after executing the USE file, you run the following program sequence:
PLIMAIN:

éALL '"PLISUB';
PLiéQB:

éALL 'PLISUB2';
PLISUB2:

éALL 'PLISUB2';

END;

the following trace, or something similar, is displayed in in the Log window:

'>PLIMAIN '
' >PLISUB '
' >PLISUB2 '
' <PLISUB2 '
' <PLISUB '
'<PLIMAIN '

If you do not want to create the USE file, you can enter the commands through the
command line, and the same effect is achieved.

Finding Unexpected Storage Overwrite Errors
During program run time, some storage might unexpectedly change its value and
you want to find out when and where this happened. Consider this example where
the program changes more than the caller expects it to change.

2 FIELD1(2) CHAR(8);

2 FIELD2 CHAR(8);

CTR = 3; /* an invalid index value is set x/
FIELD-1(CTR) = 'TOO MUCH';

Find the address of FIELD2 with the command
DESCRIBE ATTRIBUTES FIELDZ2

Suppose the result is X'00521D42"'. To set a breakpoint which watches for a
change in storage values starting at that address for the next 8 bytes, issue the
command

AT CHANGE %STORAGE('00521D42'px,8)

When the program is run, Debug Tool will halt if the value in this storage changes.

Setting a Breakpoint to Halt before Calling an Undefined
Program

Calling an undefined program or function is a severe error. To halt just before such
a call is run, set this breakpoint:

AT CALL 0

When Debug Tool stops at this breakpoint, you can bypass the CALL by entering
the GO BYPASS command. This allows you to continue your debugging session
without raising a condition.

Chapter 4. Debugging Your Programs in Full-Screen Mode 83

Using the Debug Tool Interfaces

Chapter 5. Using the Debug Tool Interfaces

This chapter describes how you interface to Debug Tool and helps you understand
and navigate through the windows provided. It covers customizing your display,
choosing Debug Tool settings to adjust your debugging environment, entering
commands on the command line, and getting help.

Customizing Debug Tool for Your Environment

Debug Tool provides its own full-screen support to supply you with a full-screen,
interactive session for debugging your application. You can configure the screen
into as many as three windows. Using all three windows, you can simultaneously
view:

e Source window - displays the source file (for C) or the source listing (for
COBOL and PL/I)

e Monitor window - displays the changing values of variables

* Log window - displays a log of your interactions with Debug Tool

Using the Debug Tool Session Panel

After you invoke your program, execution of Debug Tool begins, depending on the
specified suboptions of the run-time TEST option. If Debug Tool gains control (for
example, because of __ctest() or CALL CEETEST statements, or because
TEST(ALL) is specified) and prompts you for input, the Debug Tool session panel
appears. This panel is similar to the one shown in [Figure 19 on page 86} and you
use it to accomplish most of your tasks and communications with Debug Tool.

The Debug Tool session panel contains a header field with information about the
program you are debugging, and can also contain up to three windows: a Monitor
window, a Log window, and a Source window, in any combination. The following
sections explain what these windows are for, how to use them, how to move from
one to the other (navigate), and how to arrange their appearance and content.

Session Panel Header Fields

Figure 17 and [Figure 18 on page 85 show two examples. The first is a header for
a COBOL program, and the second is a header for C program. Descriptions of the
specific areas follow the figures.

COBOL LOCATION: XYZPROG::>SUBR:>188
COMMAND ===> SCROLL ===> PAGE |

Figure 17. Session Panel Header Fields for a COBOL Program

84 © Copyright IBM Corp. 1995, 1996

Using the Debug Tool Interfaces

C LOCATION: "DD:LIBRARY.NAME(xyzprog)" :> 7 H
COMMAND ===> SCROLL ===> PAGE |

Figure 18. Session Panel Header Fields for a C Program

C, COBOL, or PL/I:

The name of the current programming language. This is not necessarily the
programming language of what appears in the source window.

3 LOCATION:

The program unit name and statement where execution is suspended. (It is
usually in the form of compilation unit:>nnnnnn.) In the first example, execution
in XYZPROG is suspended at line 188 of subroutine SUBR. In the second
example, execution in member XYZPROG of sublibrary LIBRARY.NAME is
suspended at line 7.

El COMMAND:

The input area for the next Debug Tool command. You can enter any valid
Debug Tool command here.

I} SCROLL:

The number of lines or columns you want to scroll when you enter a scroll
command without an amount specified. You can set the display on or off using
the SET SCROLL DISPLAY command. Modify the scroll amount with the SET
DEFAULT SCROLL command.

The value in this field is the operand applied to the SCROLL UP, SCROLL
DOWN, SCROLL LEFT, and SCROLL RIGHT scrolling commands. The
scrolling commands can be used to scroll by increments of n lines, half a page,
a full page, to the top or bottom of the data, to the limit of the data, to the left
or right by specified amounts, or to the position of the cursor.

H Message areas:

Display information and error messages in the space immediately below the
command line.

Session Panel Windows

[Figure 19 on page 86| shows the entire Debug Tool session panel, including the
session panel header and the default configuration for the Source window, the Log
window, and the Monitor window.

Chapter 5. Using the Debug Tool Interfaces 85

Using the Debug Tool Interfaces

COBOL LOCATION: IBTUFS4 :> 100.1

Command ===> Scroll ===> PAGE
MONITOR --#----l----tomee2mmmmtomem3mmmto e g et o B o+----6 LINE: 1 OF 3
*hkkkrhkkhrrhrhkrkrrrkxhrrhrxkkxx [OP OF MONITOR #****kxkhkkkrhhrhrrkhrhhrkhrrkhrhhrds
0001 1 77 IBTUFS4:>VARBL2 21

0002 2 77 IBTUFS4:>VARBLL 11

0003 3 77 IBTUFS4:>X 1

*hkkhrkkkrkhrrhrhkrrrrkxxkrckxxkxx BOTTOM OF MONITOR #***kkkkrkhkrhrhkhrhhrkhrrkhrhhrds

SOURCE: IBTUFS4 =-l---—#=--=2=-mtoo-3mco—booo-fomot-—--5-——— LINE: 98 OF 118

98 ADD 1 TO VARBL1
99 ADD 1 TO VARBL2

100 CALL "SUBPROL" USING BY CONTENT PARAM1
101 ADD 1 TO X

102 END-PERFORM.

LOG Q--==t=-m=lommedoee e metme e m 3ot e e m B —— LINE: 13 OF 19
0013 The command element MONITOR is invalid.

0014 MONITOR

0015 LIST VARBL? ;

0016 MONITOR

0017 LIST VARBLI ;

0018 MONITOR

0019 LIST X 3

Figure 19. Session Panel with Opened Monitor, Source, and Log Windows

Source Window

86

The Source window displays the source file or source listing. The Source window
has four parts: the header area, the prefix area, the source display area, and the
suffix area.

Header Area: The header area identifies the window and shows the compilation
unit name. It also shows the current position of the source or listing.

Prefix Area: The prefix area appears in the leftmost eight columns of the Source
window, and contains statement numbers or line numbers you can use when
referring to the statements in your program. You can use the prefix area to set,
display, and remove breakpoints with the prefix commands AT, CLEAR, ENABLE,
DISABLE, QUERY, and SHOW. For more on prefix commands, see
[Commands” on page 90|

Source Display Area: The source display area shows the source code (for a C
program), or the source listing (for a COBOL or PL/I program) for the currently
qualified program unit. The source display is usually shown with the current
statement highlighted (if the statement can be found).

Suffix Area: The suffix area is a narrow, variable-width column at the right of the
screen. Debug Tool uses the suffix area for displaying frequency counts. It is only
as wide as the largest count it must display.

The suffix area is optional, and you can turn it on with SET SUFFIX ON, while SET
SUFFIX OFF removes it from the screen. You can also set it on or off with the
SOURCE LISTING SUFFIX field in the Profile Settings Panel. More information on
the Profile Settings Panel is included in [‘Customizing Settings” on page 99|

Debug Tool/VSE V1R1 User's Guide and Reference

Using the Debug Tool Interfaces

Monitor Window
Use the Monitor window to continuously display output from the MONITOR LIST,
MONITOR QUERY, and MONITOR DESCRIBE commands. This window is first
opened when you enter a monitor command; its contents are refreshed whenever
Debug Tool receives control and after every Debug Tool command that can affect
the display.

When you issue a MONITOR command, it is assigned a reference number between
1 and 99, and added to the monitor list. You can specify the monitor number;
however, you must either replace an existing monitor number, thus redefining the
referenced command, or use the next sequential number.

While the MONITOR command can generate an unlimited amount of output,
bounded only by your storage capacity, the Monitor window can display a maximum
of only 1000 scrollable lines of output.

If a window is not wide enough to show all the output it contains, you can either
issue SCROLL RIGHT (to scroll the window to the right) or ZOOM (to make it fill
the screen).

The labeled header line for each window contains a scale and a line counter. If
you scroll a window horizontally, the scale also scrolls so it indicates the columns
displayed in the window. The line counter indicates the line number at the top of a
window and the total number of lines in that window. If you scroll a window
vertically, the line counter reflects the top line number currently displayed in that
window.

Log Window H]

This window records and displays your interactions with Debug Tool. All
commands that are valid in full-screen mode, and their responses, are automatically
appended to the Log window except the full-screen commands PANEL, FIND,
CURSOR, RETRIEVE, SCROLL, WINDOW, and IMMEDIATE, and the QUERY and
SHOW prefix commands. If SET INTERCEPT ON is in effect for a file, that file's
output also appears in the Log window. You can optionally exclude STEP and GO
commands from the log by specifying SET ECHO OFF. Commands that can be
used with IMMEDIATE, such as the SCROLL and WINDOW commands, are
excluded from the Log window. The default for the number of log lines retained for
display is 1000 lines, but you can specify a different value with SET LOG KEEP n,
where n is the number of lines you want to keep.

The maximum length is determined by the amount of storage available.

Using the Session Log File to Maintain a Record of Your Session

Debug Tool can record your commands and their generated output in a session log
file. This allows you to record your session and use the file as a reference to help
you analyze your session strategy. You can also use the log file as a command
input file during a later session by specifying it as your primary commands file.

This is a convenient method of reproducing debugging sessions or resuming
interrupted sessions.

Chapter 5. Using the Debug Tool Interfaces 87

Using the Debug Tool Interfaces

The following appear as comments (preceded by an asterisk {*} in column 7 for
COBOL programs, and enclosed in /* */ for C or PL/I programs):

e All command output

e Commands from USE files

¢ Commands specified on a __ctest() function call

e Commands specified on a CALL CEETEST statement

e Commands specified on a CALL PLITEST statement

e Commands specified in the run-time TEST command string suboption

¢ QUIT commands

e Debug Tool messages about the program execution (intercepted console
messages, exceptions, and so on)

The default for the Debug Tool session log file is the system output device,
SYSLST. (Refer to fThe Log File” on page 30 for details on the session log file.)

| For COBOL Only

If you want to subsequently use the session log file as a commands file, make the
LRECL less than or equal to 72. Debug Tool ignores everything after column 72
for file input during a COBOL debugging session.

| End of For COBOL Only

| For CICS Only

Under CICS, SET LOG OFF is the default. To start the log, you must issue:
SET LOG ON FILE log.file;

| End of For CICS Only

Make sure the default of SET LOG ON is still in effect. If you have issued SET
LOG OFF, output to the log file is suppressed. If Debug Tool is never given
control, the log file is not created.

Entering the command, SET LOG ON FILE xxx.log, will cause the log for the
Debug Tool session to be appended to an existing file xxx.1og or, if it does not
exist, file xxx.1og will be created.

If a log file was not created for your session, you can create one with the SET LOG
command by entering:

SET LOG ON FILE (log.file);
This creates the log file Tog.file in the first sublibrary specified in the SOURCE
search chain.

At any time during your session, you can stop information from being sent to a log
file by entering:

SET LOG OFF;

88 Debug Tool/VSE V1R1 User's Guide and Reference

Using the Debug Tool Interfaces
To resume use of the log file, enter:
SET LOG ON;

The log file is active for the entire Debug Tool session.

Debug Tool keeps a log file in both full-screen mode and batch mode.

Entering Commands in a Debug Tool Session

You can enter a command or modify what is on the session panel in seven areas.
These areas are indicated in Figure 20.

C LOCATION: "ICFSSCU1" :> 89

Command ===> Scroll ===> PAGE
MONITOR --t+----1-=--t--u-2emmtoueFommtoee bbb ot-—--6 LINE: 1 OF 2
hkkkkkkkkkhxhkkrxhxkxkxkxxkxkk [OP OF MONITOR ****kkkkkkkhkhrkkkkhkkhkkkkhkkhkkk*
0001 1 VARBL1 10

0002 2 VARBLZ 20

hkkkkhkkkkhkxhkkrkkkxkxkkkxkxkx BOTTOM OF MONITOR ***kkkkkkkkhkhkkhkhkhkkhkhkhk®

SOURCE: ICFSSCUL - | --+----2--#=-=-3=o=—t-occbot-mo-5-—-—+ LINE: 81 OF 96

81 main()
82 |
83 int VARBL1 = 10;
A s int VARBL2 = 20;
85 int R = 1;
86
87 printf("--- IBFSSCCI : BEGIN\n");
88 do {
89 VARBL1++;
90 printf("INSIDE PERFORM\n");
91 VARBL2 = VARBLZ - 2;
92 R++; .
L0G B --+----1----#----2--ctoee-3mmotoo Bt +-——-6 LINE: 7 OF 15
0007 STEP ;
0008 AT 87 ;
0009 MONITOR
0010 LIST VARBLI ;
0011 MONITOR
0012 LIST VARBL2 ;
0013 GO ;
0014 STEP ;
0015 STEP ;

Figure 20. Session Panel with Command Areas Indicated

Command line: You can enter any valid Debug Tool command on the
command line.

H Scroll area: You can redefine the default amount you want to scroll by
typing the desired value over the value currently displayed.

Compile unit name area: You can change the qualification by typing the
desired qualification over the value currently displayed. For example, to
change the current qualification from ICFSSCU1, as shown in the Source
window header, to ICFSSCU2, type ICFSSCU2 over ICFSSCU1 and press
Enter.

I Prefix area: You can enter only Debug Tool prefix commands in the prefix
area, located in the left margin of the Source window.

Chapter 5. Using the Debug Tool Interfaces 89

Using the Debug Tool Interfaces

H Source window: You can modify any lines in the Source window and
place them on the command line.

[Window id area: You can change your window configuration by typing the
name of the window you want to display over the name of the window that is
currently being displayed.

Log window: You can modify any lines in the log and have Debug Tool
place them on the command line.

For information about retrieving and modifying commands, see |‘Retrieving Lines|
[from the Session Log and Source Windows” on page 92|

Command Sequencing

If you enter commands in more than one valid input area on the session panel and
press Enter, the input areas are processed in the following order of precedence:

. Prefix area

. Compile unit name area
. Scroll area

Window id area

. Source/Log window

. Command line

oA W®N =

Using the Command Line

You can type any Debug Tool command in this field. If you need to enter a
command that is longer than the field, you can indicate to Debug Tool that you
want to continue the command by typing the Debug Tool command continuation
character, the SBCS hyphen (-), at then end of your input. When the current
programming language is C, you can also use the back slash (\) as a continuation
character. Debug Tool also provides automatic continuation if your command is not
complete; for example, if the current programming language is C and your
command was begun with a left brace ({) that has not been matched by a right
brace (}).

If you need to continue your command, Debug Tool provides a MORE ... prompt
that is equivalent to another command line. You can continue to request additional
command lines with continuation characters until you complete your command.

Using Prefix Commands

90

Certain commands, known as prefix commands, can be typed over the prefix area
in the Source window, and then processed by pressing Enter. These
commands—AT, CLEAR, DISABLE, ENABLE, QUERY, and SHOW—pertain only
to the line or lines of code at which they are typed. For example, the AT command
typed in the prefix area of a specific line sets a statement breakpoint only at that
line.

You can use prefix commands to specify the particular verb or statement in the line
where you want the command to apply: for example, AT typed in the prefix area
before a line sets a statement breakpoint at the first relative statement in that line,
while AT 3 sets a statement breakpoint at the third relative statement in that line.
Typing DISABLE 3 in the prefix area and pressing Enter disables that breakpoint.

Debug Tool/VSE V1R1 User's Guide and Reference

Using the Debug Tool Interfaces

Using Cursor Commands

Certain commands are sensitive to the position of the cursor. These commands,
called cursor-sensitive commands, include all those that contain the keyword
CURSOR (such as AT CURSOR, DESCRIBE CURSOR, LIST CURSOR,
SCROLL...CURSOR, and WINDOW...CURSOR).

To enter a cursor-sensitive command, type it on the command line, position the
cursor at the location in your Source window where you want the command to take
effect (for example, at the beginning of a statement or at a verb), and press Enter.

You can also issue cursor-sensitive commands by assigning them to PF keys.

Note: Do not confuse cursor-sensitive commands with the CURSOR command,
which returns the cursor to its last saved position.

Using Program Function (PF) Keys to Enter Commands

The cursor commands, as well as other full-screen tasks, can be issued more
quickly by assigning PF keys to them than by typing them on the command line.
You can issue the WINDOW CLOSE, LIST, CURSOR, SCROLL TO, DESCRIBE
ATTRIBUTES, RETRIEVE, FIND, WINDOW SIZE, and the scrolling
commands—SCROLL UP, DOWN, LEFT, and RIGHT this way. Using PF keys
makes tasks convenient and easy.

Defining PF Keys

To define your PF keys, use the SET PFKEY command. For example, to define
PF key 8 as SCROLL DOWN PAGE, issue:

SET PF8 'Down' = SCROLL DOWN PAGE ;

The string set apart by single quotations ('Down' in this instance) is the label that
appears next to PF8 when you SET KEYS ON and your PF key definitions are
displayed at the bottom of your screen.

Abbreviating Commands

When you issue Debug Tool commands, you can abbreviate most keywords.
Usually, you need enter only enough characters in a command keyword to uniquely
specify it. You can even use an abbreviation that is the same as a variable in your
program. Debug Tool gives precedence to abbreviations of commands over
variable names.

However, you cannot truncate keywords reserved for other programming
languages, or special case keywords such as CALL, COMMENT, END, FILE (in the
SET INTERCEPT and SET LOG commands), GOTO, INPUT, LISTINGS (in the
SET DEFAULT LISTINGS command), or USE.

PROCEDURE can be abbreviated only as PROC.

Chapter 5. Using the Debug Tool Interfaces 91

Using the Debug Tool Interfaces

Retrieving Commands

You can retrieve the last command you entered by entering RETRIEVE; on the
command line. The retrieved command is displayed on the command line, and can
be issued by pressing Enter again. You can modify retrieved commands before
you reissue them.

Repeated executions of the RETRIEVE command scrolls through previous
commands in reverse order; that is, the last command entered is displayed first,
then the command prior to that, then the command prior to that, for as long as you
continue to press Enter.

To make the use of this command more convenient, assign RETRIEVE to a PF key
using the SET PFKEY command. Press the RETRIEVE PF key to display the
retrieved command on the command line. If a retrieved command is too long to fit
in the command line, only its last line is displayed.

Retrieving Lines from the Session Log and Source Windows

You can retrieve lines from your session Log and Source windows and use them as
new commands.

To retrieve a line, move the cursor to the desired line, modify it (for example, delete
any comment characters) and press Enter. The input line appears on the
command line. You can further modify the command; then press Enter to issue it.

Creating EQUATES and Using String Substitution

92

You can define a symbol to represent a long character string. For example, if you
have a long command that you do not want to retype several times, you can use
the SET EQUATE command to equate the command to a short symbol.
Afterwards, Debug Tool treats the symbol as though it were the command. The
following examples show various settings for using EQUATES:

e SET EQUATE info = "abc, def(h+1)";

Sets the symbol info to the string, "abc, def(h+1)".
o CLEAR EQUATE (info);

Disassociates the symbol and the string. This example clears info.
e CLEAR EQUATE;

If you do not specify what symbol to clear, all symbols created by SET
EQUATE are cleared.

If a symbol created by a SET EQUATE command is the same as a keyword or
keyword abbreviation in an HLL, the symbol takes precedence. If the symbol is
already defined, the new definition replaces the old. Operands of certain
commands are for environments other than the standard Debug Tool environment,
and are not scanned for symbol substitution. For a complete list of these operands,
see|'SET EQUATE” on page 309

Debug Tool/VSE V1R1 User's Guide and Reference

Using the Debug Tool Interfaces

Navigating Through Debug Tool Session Panel Windows

You can navigate in any of the windows using the CURSOR command and the

scrolling commands: SCROLL UP, DOWN, LEFT, RIGHT, TO, NEXT, TOP, and
BOTTOM. You can also search for character strings using the FIND command,
which scrolls you automatically to the specified string.

The window acted upon by any of these commands is determined by one of
several factors. If you specify a window name when entering the command, that
window is acted upon. If the command is cursor-oriented, the window containing
the cursor is acted upon. If you do not specify a window name and the cursor is
not in any of the windows, the window acted upon is determined by the settings of
Default window and Default scroll amount under the Profile Settings Panel. For
more information on these settings, see [FCustomizing Settings” on page 99,

Moving the Cursor

To move the cursor back and forth quickly from the Monitor, Source, or Log window
to the command line, use the CURSOR command. This command, and several
other cursor-oriented commands, are highly effective when assigned to PF keys.
(For details on how to assign commands to PF keys, see [‘Using Program Function|
[(PF) Keys to Enter Commands” on page 91}) After assigning the CURSOR
command to a PF key, move the cursor by pressing that PF key. If the cursor is
not on the command line when you issue the CURSOR command, it goes there.

To return it to its previous position, press the CURSOR PF key again.

Scrolling the Windows

You can scroll any of the windows vertically and horizontally by issuing the
SCROLL UP, DOWN, LEFT, and RIGHT commands (the SCROLL keyword is
optional). You can use the command line to specify which window to scroll. For
example, to scroll the Monitor window up 5 lines, enter SCROLL UP 5 MONITOR,;.

Alternately, you can use the position of the cursor to indicate the window you want
to scroll; if the cursor is in a window, that window is scrolled. If you do not specify
the window, the default window (determined by the setting of the DEFAULT
WINDOW command) is scrolled.

Positioning Lines at the Top of Windows

If you want to display a selected line at the top of a window, issue the SCROLL TO
command. Use the statement numbers shown in the window prefix areas. Type
the line number on the command line, move the cursor to the selected window, and
press the SCROLL TO PF key. Or, type SCROLL TO n (where n is a line number)
on the command line and press Enter. For example, to bring line 345 to the top of
the window, enter SCROLL TO 345; on the command line. The selected window is
scrolled vertically so that your specified line is displayed at the top of that window.

Searching for a Character or Character String
To search the Log, Source, or Monitor window for a given character or graphic
string while you are engaged in a full-screen Debug Tool session, issue the FIND
command. The following list provides you with examples of using the FIND
command:

Chapter 5. Using the Debug Tool Interfaces 93

Using the Debug Tool Interfaces

 If you want to search your listing for the variable varl, enter the following
command, place the cursor in the Source window, and press Enter:

FIND "varl";

— Alternatively, you can enter:
FIND "varl" SOURCE;

— If varl is in the Log or Monitor window, enter:
FIND "varl" LOG

or
FIND "varl" MONITOR

If varl is found but not visible in the specified window, the window scrolls
forward vertically and horizontally in order to display it. When Debug Tool
locates and displays it, varl is highlighted and the cursor is placed at the
variable. The search wraps around so if the window is positioned past the last
occurrence, the first occurrence in the window is found.

 If you want to search the specified window for the next occurrence of varl, just
enter the following command, place the cursor in the window you are
searching, and press Enter:

FIND

You do not need to provide the variable name, because Debug Tool
remembers the string you last searched for. Again, the specified window is
scrolled forward, varl is highlighted, and the cursor points to the variable.

You can think of the FIND command as a cursor-sensitive command, and you
can conveniently issue it if you first assign it to a PF key.

* Assume you have assigned FIND to a PF key and want to search for the
variable varl in the Source window. All you need to do is type "varl" or
'varl' on the command line, move the cursor to the Source window, and press
the FIND PF key. The window scrolls forward and displays the occurrence of
varl.

If you do not place the cursor in a selected window or specify a window on the
command line, the FIND command searches the window specified with the SET
DEFAULT WINDOW command or the Default window entry in your Profile
Settings Panel.

If you are searching for strings with trigraphs in them, the trigraphs or their
equivalents can be used as input, and Debug Tool matches them to trigraphs or
their equivalents.

Customizing Your Session

94

You have several options for customizing your session. For example, you can
resize and rearrange windows, close selected windows, change session
parameters, and change session panel colors. This section explains how to
customize your session using these options.

The window acted upon as you customize your session is determined by one of
several factors. If you specify a window name (for example, WINDOW OPEN
MONITOR to open the Monitor window), that window is acted upon. If the

Debug Tool/VSE V1R1 User's Guide and Reference

Using the Debug Tool Interfaces

command is cursor-oriented, such as the WINDOW SIZE command, the window
containing the cursor is acted upon. If you do not specify a window name and the
cursor is not in any of the windows, the window acted upon is determined by the
setting of Default window under the Profile Settings Panel. For information on the
settings included in that panel, see|‘Customizing Settings” on page 99|

Changing Session Panel Window Layout

You can change window placements on the session panel during your session by
using the PANEL LAYOUT command. The PANEL keyword is optional. When you
issue this command, you are presented with a configuration panel as shown in
Figure 21. The configuration panel displays six possible ways you can change
your Debug Tool session panel window placements.

Window Layout Selection Panel

Command ===>

I et e 2 e o3 e . Legend:

___________ L - Log
S | emmmmmmeeeo| e M - Monitor
___________ S - Source

————————————————————————————————— To reassign the
Source, Monitor,

R ——— S S R e . and Log windows,
type over the
current settings
__________ or underscores
with L, M, or S.

Enter QUIT to return with current settings saved.
CANCEL to return without current settings saved.

Figure 21. Window Layout Selection Panel. The default configuration is shown as option 1.

Initially, the session panel looks like the default window configuration shown as
H in Figure 21.

To change the window placements for your Debug Tool session, select a
configuration example and move the cursor to your selected example. Type the
desired window letters—L for Log, M for Monitor, and S for Source—over the
underscores; then press Enter. In Figure 21, configuration is the chosen
configuration.

Note: If you choose a different configuration than that displayed you should not
blank out the window letters in that configuration, just enter the letters in
your new configuration.

You can select only one configuration at a time. Also, only one of each type of

window can be visible at a time on your session panel. For example, you cannot
assign the session log to be visible in more than one window.

Chapter 5. Using the Debug Tool Interfaces 95

Using the Debug Tool Interfaces

After you reassign the window placements, issue the END command or press the
END PF key to save the changes and return to the session display.

Opening and Closing Session Panel Windows

To open and close any of the windows on the Debug Tool session panel, issue the
WINDOW OPEN and WINDOW CLOSE commands. For example, if you want to
open the Monitor window, enter:

WINDOW OPEN MONITOR;

You can also issue the WINDOW CLOSE command by typing it on the command
line, placing the cursor in the desired window (or by specifying the name of the
window as an operand of the WINDOW CLOSE command), and pressing Enter.
When you close one or two specified windows, the remaining windows occupy the
full area of the screen. For example, to close the Source window from the
command line, enter:

WINDOW CLOSE SOURCE;

The WINDOW CLOSE command can be assigned to a PF key. For details, see
[‘Using Program Function (PF) Keys to Enter Commands” on page 91|

If you want to monitor the values of selected variables as they change during your
Debug Tool session, the Monitor window must be open. If it is closed, open it as
described above. The Monitor window fills in the available space indicated by your
selected configuration.

If at anytime during your session you open a window and the contents assigned to
it are not available, the window is empty.

Sizing Session Panel Windows

96

In addition to configuring, opening, and closing the Debug Tool session panel
windows, you can control the relative sizes of these windows by using the
WINDOW SIZE command. You can either explicitly specify the number of rows or
columns you want the window to contain (as appropriate for the window
configuration) or use the WINDOW SIZE command with the cursor. The WINDOW
keyword is optional. For example, to explicitly change the Source window from 10
rows deep to 12 deep, enter:

WINDOW SIZE 12 SOURCE

By positioning the cursor at the point on the screen where you want the window
boundary and issuing the WINDOW SIZE command, you can adjust the relative
sizes of windows with great flexibility. For instance, assume only the Source and
Log windows are open and you want to enlarge the size of the Source window
before you step through your program. Enter:

WINDOW SIZE SOURCE;

on the command line, move the cursor to the desired row, and press Enter. The
boundary of the Source window moves to the cursor position.

WINDOW SIZE can be assigned to a PF key. For details, see|“Using Program|
[Function (PF) Keys to Enter Commands” on page 91|

Debug Tool/VSE V1R1 User's Guide and Reference

Using the Debug Tool Interfaces

During your session, if you modify the relative sizes of your windows using the
cursor you can restore them to the default sizes by entering:

PANEL LAYOUT RESET;

Intersecting Windows

To change the size of any intersecting windows (in configurations i, E, B and
. shown in Figure 21) type:

WINDOW SIZE;

on the command line, move the cursor to where you want the windows to intersect,
and press Enter. The windows are resized according to the new point of
intersection.

Horizontal Windows

To change the size of the upper two horizontal windows (in configuration |,
shown in Figure 21), use the WINDOW SIZE command as above, either moving
the cursor below the window intersection to increase the top window and decrease
the middle one, or moving it above the intersection to increase the middle window
and decrease the top one.

Similarly, you can change the size of the middle and bottom windows.

Vertical Windows

To change the size of the left and middle windows (in configuration [[J, shown in
Figure 21), use the WINDOW SIZE command, either moving the cursor to the left
of the window intersection to increase the middle window and decrease the left
one, or moving it to the right of the intersection to increase the left window and
decrease the middle one.

Zooming a Window

The WINDOW ZOOM command specifies that the indicated window be expanded
to fill the screen. This function allows you to view more data, reducing the amount
of scrolling needed.

If the specified window is already zoomed and you specify ZOOM again, the
currently defined window configuration is restored.

Customizing Colors

You can change the color and highlighting on your session panel to distinguish the
fields on the panel. Consider highlighting such areas as the current line in the
Source window, the prefix area, and the statement identifiers where breakpoints
have been set.

To change the color, intensity, or highlighting of various fields of the session panel
on a color terminal, use the PANEL COLORS command. When you issue this
command, the panel shown in|Figure 22 on page 98 hppears.

The usable color attributes are determined by the type of terminal you are using. If
you have a monochrome terminal, you can still use highlighting and intensity
attributes to distinguish fields.

Chapter 5. Using the Debug Tool Interfaces 97

Using the Debug Tool Interfaces

98

Color Selection Panel
Command ===>
Color Highlight Intensity

Title : field headers TURQ NONE HIGH
output fields GREEN NONE LOW Valid Color:
Monitor: contents TURQ REVERSE LOW White Yellow Blue
line numbers TURQ REVERSE LOW Turg Green Pink Red
Source : listing area WHITE REVERSE LOW
prefix area TURQ REVERSE LOW Valid Intensity:
suffix area YELLOW REVERSE LOW High Low
current line RED REVERSE HIGH
breakpoints GREEN NONE LOW Valid Highlight:
Log : program output TURQ NONE HIGH None Reverse
test input YELLOW NONE LOW Underline Blink
test output GREEN NONE HIGH
1ine numbers BLUE REVERSE HIGH Color and Highlight
Command line WHITE NONE HIGH are valid only with
Window headers GREEN REVERSE HIGH color terminals.
Tofeof delimiter BLUE REVERSE HIGH
Search target RED NONE HIGH
Enter END/QUIT to return with current settings saved.
CANCEL to return without current settings saved.

Figure 22. Color Selection Panel with Default Settings

Initially, the session panel areas and fields have the default color and attribute
values shown in Figure 22.

To change the color and attribute settings for your Debug Tool session, enter the
desired colors or attributes over the existing values of the fields you want to
change. The changes you make are saved when you enter QUIT.

You can also change the colors or intensity of selected areas by issuing the
equivalent SET COLOR command from the command line. Either specify the fields
explicitly, or use the cursor to indicate what you want to change. Changing a color
or highlight with the equivalent SET command changes the value on the Color
Selection Panel.

Color and attribute settings remain in effect for the entire debug session.

To preserve any changes you make to the default field colors, Debug Tool saves
color and attribute settings for use during subsequent sessions in a profile settings
file in the sublibrary member userid. DTSAFE. If Debug Tool finds member

userid. DTSAFE when it initializes the debugging session, it saves revised color and
attribute settings in the same member in the same sublibrary (that is, it overwrites
the existing member). If it has to create the member, it writes it to the first
sublibrary in the SOURCE search chain (see[‘Profile Settings File” on page 29 for
further information). If this member is not available for your next session, Debug
Tool begins the next debugging session with the values shown in Figure 22.

Debug Tool/VSE V1R1 User's Guide and Reference

Using the Debug Tool Interfaces

Customizing Settings
The PANEL PROFILE command displays the Profile Settings Panel, which contains
profile settings that affect the way Debug Tool runs. This panel is shown in
Figure 23 with the IBM-supplied initial settings. You can change the settings by
either typing over them with the desired values, or by issuing the appropriate SET
command from the command line or from within a commands file.

Profile Settings Panel
Command ===>
Current Setting

Change Test Granularity STATEMENT (A11,B1k,Line,Path,Stmt)
DBCS characters NO (Yes or No)

Default Listing sublibrary

Default scroll amount PAGE (Page,Half,Max,Csr,Data,int)
Default window SOURCE (Log,Monitor,Source)
Execute commands YES (Yes or No)

History YES (Yes or No)

History size 100 (nonnegative integer)
Logging YES (Yes or No)

Pace of visual trace 2 (steps per second)
Refresh screen NO (Yes or No)

Rewrite interval 50 (number of output lines)
Session log size 1000 (number of retained Tines)
Show Tog Tine numbers YES (Yes or No)

Show message ID numbers NO (Yes or No)

Show monitor Tine numbers YES (Yes or No)

Show scroll field YES (Yes or No)

Show source/listing suffix YES (Yes or No)

Show warning messages YES (Yes or No)

Test level ALL (A11,Error,None)

Enter QUIT to return with current settings saved.

CANCEL to return without current settings saved.

Figure 23. Profile Settings Panel with Default Settings

A list of the profile parameters, their descriptions, and the equivalent SET
commands follows.

Change Test Granularity
Specifies the granularity of testing for AT CHANGE. Equivalent to SET
CHANGE.

DBCS characters
Controls whether the shift-in and shift-out characters are recognized.
Equivalent to SET DBCS.

Default Listing sublibrary
Specifies the sublibrary where Debug Tool looks for the source/listing.
Equivalent to SET DEFAULT LISTINGS.

Default scroll amount
Specifies the default amount assumed for SCROLL commands where no
amount is specified. Equivalent to SET DEFAULT SCROLL.

Chapter 5. Using the Debug Tool Interfaces 99

Using the Debug Tool Interfaces

Default window
Selects the default window acted upon when WINDOW commands are issued
with the cursor on the command line. Equivalent to SET DEFAULT WINDOW.

Execute commands
Controls whether commands are executed or just checked for syntax errors.
Equivalent to SET EXECUTE.

History
Controls whether a history (an account of each time Debug Tool is entered) is
maintained. Equivalent to SET HISTORY.

History size
Controls the size of the Debug Tool history table. Equivalent to SET
HISTORY.

Logging
Controls whether a log file is written. Equivalent to SET LOG.

Pace of visual trace
Sets the maximum pace of animated execution. Equivalent to SET PACE.

Refresh screen
Clears the screen before each display. REFRESH is useful when there is
another application writing to the screen. Equivalent to SET REFRESH.

Rewrite interval
Defines the number of lines of intercepted output that are written by the
application before Debug Tool refreshes the screen. Equivalent to SET
REWRITE.

Session log size
The number of session log output lines retained for display. Equivalent to SET
LOG.

Show log line humbers
Turns line numbers on or off in the Log window. Equivalent to SET LOG
NUMBERS.

Show message ID numbers
Controls whether ID numbers are shown in Debug Tool messages. Equivalent
to SET MSGID.

Show monitor line numbers
Turns line numbers on or off in the Monitor window. Equivalent to SET
MONITOR NUMBERS.

Show scroll field
Controls whether the scroll amount field is shown in the display. Equivalent to
SET SCROLL DISPLAY.

Show source/listing suffix
Controls whether the frequency suffix column is displayed in the Source
window. Equivalent TO SET SUFFIX.

Show warning messages (C and PL/I only)
Controls whether warning messages are shown or conditions raised when
commands contain evaluation errors. Equivalent to SET WARNING.

100 Debug Tool/VSE V1R1 User's Guide and Reference

Using the Debug Tool Interfaces

Test level
Selects the classes of exceptions to cause automatic entry into Debug Tool.
Equivalent to SET TEST.

A field indicating scrolling values is shown only if the screen is not large enough to
show all the profile parameters at once. This field is not shown in Figure 23.

You can change the settings of these profile parameters at any time during your
session. For example, you can increase the delay that occurs between the
execution of each statement when you issue the STEP command by modifying the
amount specified in the PACE OF VISUAL TRACE field at any time during your
session.

To modify the profile settings for your session, enter a new value over the old value
in the field you want to change. Equivalent SET commands are issued when you
QUIT from the panel.

Entering the equivalent SET command changes the value on the Profile Settings
Panel as well.

To preserve any changes you make to the session panel settings, Debug Tool
saves these settings for use during subsequent sessions in a profile settings file in
the sublibrary member userid DTSAFE. If Debug Tool finds member

userid. DTSAFE when it initializes the debugging session, it saves revised session
panel settings in the same member in the same sublibrary (that is, it overwrites the
existing member). [f it has to create the member, it writes it to the first sublibrary in
the SOURCE search chain (see [Profile Settings File” on page 29|for further
information).

All PANEL settings are saved, except the setting for the Listing Panel and the
following settings:

COUNTRY

FREQUENCY

INTERCEPT

LOG

NATIONAL LANGUAGE
PROGRAMMING LANGUAGE
QUALIFY

SOURCE

TEST

If this sublibrary member is not available for your session, Debug Tool begins the
next debugging session with the values shown in Figure 23.

Settings remain in effect for the entire debug session.

Chapter 5. Using the Debug Tool Interfaces 101

Using the Debug Tool Interfaces

Getting Help During Your Session

Command syntax help is available with Debug Tool. If you are uncertain as to the
proper syntax or exact keywords required by a command, enter the command,
followed by a question mark, on the command line:

STEP ?

The following information is displayed in your Log window:

The partially parsed command is:
STEP

The next word can be one of:

* OVER

; RETURN

unsigned positive integer

INTO

102 Debug Tool/VSE V1R1 User's Guide and Reference

Multiple Enclaves

Chapter 6. Multiple Enclaves

This chapter discusses debugging multiple enclaves, and using Debug Tool
features with multiple enclaves.

The following topics are covered in this chapter:

Invoking Debug Tool within an enclave

Using the Source window

Retaining a log file of your Debug Tool session
Processing commands from a commands file

Using breakpoints within multiple enclaves

Ending a Debug Tool session

Using Debug Tool commands within multiple enclaves

In LE/VSE terminology, an enclave is collection of routines, one of which is
designated as the main routine. An enclave is equivalent to a COBOL run unit, a C
program consisting of a main C function and its subroutines, or a PL/l main
procedure and all its subprocedures. An enclave exists within an LE/VSE process.
In LE/VSE, one enclave (the parent enclave) can create a second enclave (the
child enclave) in the same process by using the following methods:

¢ Under CICS, the EXEC CICS LINK and EXEC CICS XCTL commands

¢ In the batch environment, the C system() function

Note, however, that a child enclave is only created if the target routine of these
commands is written in an LE/VSE-conforming HLL or LE/VSE-conforming
assembler.

For more information about enclaves, processes, and multiple (or nested) enclaves,
see LE/VSE Programming Guide.

Invoking Debug Tool within an Enclave

There is a single Debug Tool session across all enclaves in a process. Once
Debug Tool is activated by any enclave in the process, it remains active throughout
subsequent enclaves in the process, regardless of whether the run-time options for
the enclave specify TEST or NOTEST. Debug Tool retains the settings specified
from the TEST run-time option for the enclave that activated it, until you modify
them with SET TEST (see [‘SET TEST” on page 323).

If Debug Tool is first activated in a child enclave of a process, and you STEP or
GO back to the parent enclave, you can debug the parent enclave. However, if the
parent enclave contains COBOL but the nested enclave does not, Debug Tool is
not active for the parent enclave, even upon return from the child enclave.

Upon activation of Debug Tool, the initial commands string, primary commands file,

and the preferences file are run. They run only once, and affect the entire Debug
Tool session. A new primary commands file cannot be invoked for a new enclave.

© Copyright IBM Corp. 1995, 1996 103

Multiple Enclaves

Using the Source Window

A particular enclave's Source and Listing windows are hidden when that enclave
invokes another enclave. You cannot open a Source or Listing window for a
compile unit unless that compile unit is in the current enclave.

Retaining a Log File of your Debug Tool Session
Ensure that your log file is correctly allocated. See [‘Using the Session Log File to|
[Maintain a Record of Your Session” on page 87|

Processing Commands from a Commands File
A commands file continues to process its series of commands regardless of what
level of enclave is entered.

Using Breakpoints within Multiple Enclaves

When any process is initialized, a termination breakpoint is automatically defined for
the process, and each enclave in the process. Unless you clear or disable this
breakpoint, it will be triggered when each enclave finishes execution. During run
time of a termination breakpoint, GO and STEP are valid commands that cause
your program to continue running the next enclave in the series.

Ending a Debug Tool Session

In a single enclave, QUIT closes Debug Tool. In a nested enclave, however, QUIT
causes Debug Tool to signal a severity 3 condition corresponding to LE/VSE
message CEE2529S, and the enclave is terminated. LE/VSE then terminates the
entire process with abend 4094 reason code 40 (X'28").

There is one case where Debug Tool raises LE/VSE severity 3 condition and all
enclaves in the process do not terminate: Under CICS, when the assembler user
exit for the application (or the default assembler user exit) does not perform an
EXEC CICS ABEND for unhandled severity 3 conditions. In these cases, the
application continues to run, but Debug Tool becomes inactive.

| For CICS Only |

Under CICS, an abend appears on the application terminal. For LE/VSE it is 4038.
An abend at termination of a nested enclave is normal and should be expected.

| End of For CICS Only

Using Debug Tool Commands within Multiple Enclaves
Some Debug Tool commands and variables have a specific scope for enclaves and
processes| Table 3 on page 105/ summarizes the behavior of specific Debug Tool
commands and variables when you are debugging an application that consists of
multiple enclaves. For syntax and a full description of each of the Debug Tool
commands, see|Chapter 13, “Debug Tool Commands” on page 206

104 Debug Tool/VSE V1R1 User's Guide and Reference

Multiple Enclaves

Table 3 (Page 1 of 2). Scope of Debug Tool Commands and Variables across Multiple Enclaves

Affects
Affects Entire
Current Debug
Enclave Tool
Debug Tool Command Only Session | Comments
%CAAADDRESS X
AT GLOBAL X
AT TERMINATION X
CLEAR AT X X In addition to clearing breakpoints set in the current
enclave, CLEAR AT can clear global breakpoints.
CLEAR DECLARE X
CLEAR VARIABLES X
Declarations X Session variables are cleared at the termination of the
process in which they were declared.
DISABLE X X In addition to disabling breakpoints set in the current
enclave, DISABLE can disable global breakpoints.
ENABLE X X In addition to enabling breakpoints set in the current
enclave, ENABLE can enable global breakpoints.
LIST AT X X In addition to listing breakpoints set in the current
enclave, LIST AT can list global breakpoints.
LIST CALLS X Lists the call chain for the current active thread in the
current active enclave.
LIST EXPRESSION X You can only list variables in the currently active thread.
LIST LAST X
LIST NAMES CUS X Applies to compile unit names.
LIST NAMES TEST X Applies to Debug Tool session variable names.
MONITOR GLOBAL X Applies to Global monitors.
PROCEDURE X
SET COUNTRY1 X This setting affects both your application and Debug Tool.
At the beginning of an enclave, the settings are those
provided by LE/VSE or your operating system. For
nested enclaves, the parent's settings are restored upon
return from a child enclave.
SET EQUATE! X
SET INTERCEPT1 For C, intercepted streams or files cannot be part of any
C /O redirection during the execution of a nested
enclave. For example, if stdout is intercepted in program
A, program A cannot then redirect stdout to stderr when
it does a system() call to program B. Also, not supported
for PL/I.
SET NATIONAL X This setting affects both your application and Debug Tool.

LANGUAGE!

At the beginning of an enclave, the settings are those
provided by LE/VSE or your operating system. For
nested enclaves, the parent's settings are restored upon
return from a child enclave.

Chapter 6. Multiple Enclaves 105

Multiple Enclaves

Table 3 (Page 2 of 2). Scope of Debug Tool Commands and Variables across Multiple Enclaves

Affects
Affects Entire
Current Debug
Enclave | Tool
Debug Tool Command Only Session | Comments
SET PROGRAMMING X Applies only to programming languages in which compile
LANGUAGE! units known in the current enclave are written (a language
is “known” the first time it is entered in the application
flow).
SET QUALIFY1 X Can only be issued for phases, compile units, and blocks
that are known in the current enclave.
SET TEST! X
TRIGGER condition2 X Applies to triggered conditions.2 Conditions can be either
an LE/VSE symbolic feedback code, or a
language-oriented keyword or code, depending on the
current programming language setting.
TRIGGER AT X X In addition to triggering breakpoints set in the current
enclave, TRIGGER AT can trigger global breakpoints.
Note:

1. SET commands other than those listed in this table affect the entire Debug Tool session.
2. If no active condition handler exists for the specified condition, the default condition handler can cause the
program to end prematurely.

106 Debug Tool/VSE V1R1 User's Guide and Reference

Using Debug Tool in Different Modes and Environments

Chapter 7. Using Debug Tool in Different Modes and
Environments

This chapter describes:
e Using Debug Tool in interactive (full-screen) and batch mode

e Programming considerations for CICS, DL/I, and SQL/DS in interactive or batch
mode

e Examples of build steps for CICS, DL/I, and SQL/DS applications, including
preprocessing, compile, link, run, and debug

e Suggestions on how to invoke Debug Tool in CICS, DL/I, and SQL/DS
environments

e Using Debug Tool CICS Interactive Run-Time Facility (DTCN)

Using Debug Tool in Batch Mode
Debug Tool can run in batch mode, creating a non-interactive session.
In batch mode Debug Tool receives its input from either the preferences file,

primary commands file, a USE file, or the command string specified in the run-time
TEST option, and writes its normal output to a log file.

Commands that require user interaction, such as PANEL, are invalid in batch
mode.
You might want to run a Debug Tool session in batch mode if:

* You want to restrict the processor resources used. Batch mode generally uses
fewer processor resources than interactive mode.

* You have a program that might tie up your terminal for long periods of time.
With batch mode, you can use your terminal for other work while the batch job
is running.

e You are debugging a CICS non-terminal application.

When Debug Tool is reading commands from a specified file and no more
commands are available in that file, it forces a GO command until the end of the
program is reached.

When debugging in batch mode, use a QUIT command to end your session.

Debugging CICS Programs

Before you can debug your programs under CICS, make sure your Systems
Programmer has made the appropriate changes to your CICS partition to support
Debug Tool (see Debug Tool for VSE/ESA Installation and Customization Guide).
You also need to ensure that your program is translated by the CICS translator
prior to compilation. The program listing (for COBOL and PL/l) or the program
source file (for C) must be retained in a permanent file for Debug Tool to read
when you debug your program.

© Copyright IBM Corp. 1995, 1996 107

Using Debug Tool in Different Modes and Environments

Note: For C, it is the input to the compiler (that is, the output from the CICS

translator) that needs to be retained. To enhance performance when using
Debug Tool, use a large blocksize when saving these to sequential access
files.

Debug Modes under CICS

Debug Tool can run in several different modes, providing you with the flexibility to
debug your applications in the way that suits you best. These modes include:

Single Terminal Mode:

A single 3270 session is used by both Debug Tool and the application,
swapping displays on the terminal as required.

As you step through your application, the terminal shows Debug Tool screens,
but when an EXEC CICS SEND command is issued, that screen will be
displayed. Debug Tool holds that screen on the terminal for you to
review--simply press enter to return to a Debug Tool screen. When your
application issues EXEC CICS RECEIVE, the application screen again
appears, so you can fill in the screen details.

Note: In this mode it is recommended to set screen refreshing on by issuing
the Debug Tool command SET REFRESH ON.

Dual Terminal Mode:

This mode can be useful if you are debugging screen 1/O applications. Debug
Tool displays its screens on a separate 3270 session than the terminal
displaying the application.

You step through the application using the Debug Tool terminal and, whenever
the application issues an EXEC CICS SEND, the screen is sent to the
application display terminal.

When the application issues an EXEC CICS RECEIVE, the Debug Tool
terminal will wait until you respond to the application terminal.

Note: If you do not code IMMEDIATE on the EXEC CICS SEND command,
the buffer of data might be held within CICS Terminal Control until an
optimum opportunity to send it is encountered--usually the next EXEC
CICS SEND or EXEC CICS RECEIVE.

Interactive Non-terminal Mode:

Use this mode if you are debugging a transaction which does not normally
have a terminal associated with it. Debug Tool screens are displayed on a
3270 session that you name.

Non-interactive Non-terminal Mode:

In this mode, Debug Tool does not have a terminal associated with it. It
receives its commands from a command file and writes its results to a log file.
This mode is useful if you want Debug Tool to debug a program automatically.

108 Debug Tool/VSE V1R1 User's Guide and Reference

Using Debug Tool in Different Modes and Environments

Mechanisms for Invoking Debug Tool under CICS

There are several different mechanisms available to invoke Debug Tool under
CICS:

1. Debug Tool CICS Interactive Utility (DTCN)

DTCN is a full-screen CICS transaction that allows you to specify your
debugging requirements dynamically. It also gives you the opportunity to
provide any LE/VSE run-time options you might want to override during your
debugging session.

DTCN is the recommended mechanism for invoking Debug Tool for most debug
sessions and can support all the modes outlined above.

2. LE/VSE CEEUOPT module link-edited into your application, containing an
appropriate TEST option.

This CEEUOPT mechanism tells LE/VSE to invoke Debug Tool every time the
application is run. It can be useful during initial testing of new code when you
will want to run Debug Tool frequently.

You need to relink the application, removing the CEEUOPT module when you
have finished debugging the application.

3. A run-time directive within the application, such as #pragma runopts(test) for
C, the PLIXOPT string or CALL PLITEST for PL/I, or CALL CEETEST.

These directives can be useful when you need to run multiple debug sessions
for a piece of code which is deep inside a multiple enclave or multiple CU
application. The application will run without Debug Tool until it encounters the
directive, at which time Debug Tool is invoked at the precise point that you
specify. With CALL CEETEST, you can even make the invocation of Debug Tool
conditional, depending on variables that the application can test.

Preparing and Using DTCN to Invoke Debug Tool under CICS
In order to use the DTCN utility to invoke Debug Tool, link-edit the DTCN
customized LE/VSE user exit into the CICS program you want to debug. The JCL
which link-edits your application should include the library which contains
EQADCCXT in the OBJ search chain. Your link-edit options should include the
following statement:

INCLUDE EQADCCXT

In order to use the DTCN utility, run the DTCN transaction at a 3270 session. If
DTCN is not available, the CICS partition most likely has not been set up to run
Debug Tool, and you should consult your Systems Programmer.

After DTCN is started, the panel below is provided. The fields are designed to
capture the information needed for Debug Tool to start a debugging session with
your application. The data provided by the user is then stored in a Debug Tool
run-time start-up profile repository.

Chapter 7. Using Debug Tool in Different Modes and Environments 109

Using Debug Tool in Different Modes and Environments

DTCN Screen
Start DTCN by entering the transaction identifier DTCN. The following screen

appears:
DTCN DEBUG TOOL CICS Interactive Runtime Facility DBDCCICS
Item Choice Possible choices
Terminal Id ==> 084 Application Terminal Id
Transaction Id ==> Any valid Trans Id
Session Parm
DT/VSE Term Id ==> MFI - DT Term Id(dual terminal mode)
Test Option ==> Test Test/Notest
Test Level ==> Al] A11/Error/None
Command File ==>
Prompt Level ==> Prompt

Preference File ==> *

Any other valid Language Environment Options
==>

EQA2007E SHOW FAILED - PROFILE DOES NOT EXIST

PF1=HELP 2=GHELP 3=EXIT 4=ADD 5=REPLACE 6=DELETE 7=SHOW 8=NEXT 10=CLOSE DTCN

Figure 24. Initial DTCN screen with no user profile.

The sections that follow provide a detailed description for each area of the initial
DTCN screen shown above.

Header Area

DTCN DEBUG TOOL CICS Interactive Runtime Facility DBDCCICS

Item Choice Possible choices

Figure 25. Header Area on the DTCN Screen

The Header area contains:
¢ |dentifier of the transaction - DTCN.

e Application Id of the CICS partition in which the transaction is running -
DBDCCICS in the case above.

e Column's description.

110 Debug Tool/VSE V1R1 User's Guide and Reference

Using Debug Tool in Different Modes and Environments

Input Area
The following sections show the Input Area on the DTCN screen.
Area 1
Terminal Id ==> 1084 Application Terminal Id
Transaction Id ==> Any valid Trans Id
Area 2 Session Parm
DT/VSE Term Id ==> MFI - DT Term Id(dual terminal mode)
Area 3 Test Option ==> Test Test/Notest
Test Level ==> All A11/Error/None
Command File ==>
Prompt Level ==> Prompt
Preference File ==> *
Area 4

Any other valid Language Environment Options

Figure 26. Sections of the Input Area on the DTCN Screen

The input area is used to display and enter the data for the debugging profile. The
input area of the DTCN panel is divided into four sections:

Area 1: This section contains the Terminal Id and Transaction Id which when
concatenated together are the key used by DTCN to process debugging profiles.

Terminal Id CICS terminal identifier where you want to run your application in
debugging mode.

Note: The default value of this field is the terminal identifier from
where DTCN is being run.

Transaction Id CICS transaction identifier you want to debug.

Area 2: This section contains the Terminal Id of the terminal used to display
Debug Tool panels when Debug Tool is run in dual terminal mode.

DT/VSE Term Id
The CICS terminal identifier where you want Debug Tool to
initialize during a dual-terminal mode debugging session.

Area 3: For more detailed information on the following fields, see [Run-Timel
[TEST Option Syntax” on page 33|

TEST Option TEST/NOTEST specifies the conditions under which Debug Tool
assumes control during the initialization of the application.

Test Level ALL/ERROR/NONE specifies what conditions need to be met for
Debug Tool to gain control.

Command File A valid file-id specifying the primary command file for this run.

Note: Enclosing the name of the file in single or double quotes is
not allowed.

Prompt Level PROMPT/NOPROMPT//; specifies whether Debug Tool is invoked
at LE/VSE initialization.

Chapter 7. Using Debug Tool in Different Modes and Environments 111

Using Debug Tool in Different Modes and Environments

112

Preference File
A valid file-id specifying the preference file to be used.

Note: Enclosing the name of the file in single or double quotes is
not allowed.
Area 4

Other LE/VSE options
This area is provided to allow the user to specify additional
run-time options needed to debug their application.

Message Line

==>

EQA2007E SHOW FAILED - PROFILE DOES NOT EXIST

Figure 27. Message Line on the DTCN Screen

DTCN displays the messages at the bottom of the screen. When DTCN is started,
it attempts to show the profile for the terminal on which it has been invoked. If a
profile has not previously been established for the given terminal, message
EQA2007E is displayed. For more information about profiles, see
[Repository” on page 113]

For a successful Show or Next command, DTCN displays the full LE/VSE options
stored in the Profile Repository. Options longer than 79 characters are truncated
but their contents are properly displayed in the input field section. Check
|[Appendix F, “Debug Tool Messages” on page 355 for an explanation and
programmers response.

DTCN PF Key Definitions

PF1=HELP 2=GHELP 3=EXIT 4=ADD 5=REPLACE 6=DELETE 7=SHOW 8=NEXT 10=CLOSE DTCN

Figure 28. PF Key Area on the DTCN Screen

The PF keys are described as follows:

PF1 Help Context sensitive help. Provides detailed help for the entry fields
when positioning the cursor on the field and pressing ? (PF1).

PF2 GHelp General help for DTCN

PF3 Exit Exits DTCN

PF4 Add Adds a new profile to the profile repository (no replace)
PF5 Replace Replaces an existing profile in the repository (no add)
PF6 Delete Removes the current profile from the repository

PF7 Show Retrieves the specified profile from the repository

PF8 Next Retrieves the next profile from the repository

PF10 Close Deletes the profile repository with all stored debugging profiles

Debug Tool/VSE V1R1 User's Guide and Reference

Using Debug Tool in Different Modes and Environments

Profile Repository

DTCN allows you to build Debug Tool run-time start-up profiles that are used when
you run your application. These profiles are stored in a Debug Tool Profile
Repository that contains all the entries for the CICS partition you are working in.
The fields on the DTCN screen defined earlier make up the data for one entry. The
DTCN screen allows you to add, replace, or delete an entry from the Profile
Repository.

DTCN uses a key that uniquely identifies each entry in the Profile Repository. The
key is made up by concatenating the application Terminal Id and Transaction Id
fields from the DTCN screen. Entries are sorted and stored in the repository using
this key.

Note: The Debug Tool Profile Repository is stored in working storage, and is only
held by Debug Tool for the duration of the current CICS job. The Debug
Tool Profile Repository is not maintained from one invocation of CICS to the
next.

The scope of the debugging profile depends on the contents of the Terminal Id and
Transaction Id. There are three levels of the profiles:

Terminal Id (blank)
Debugging profile applies to any invocation of a given Transaction
Id partition wide (generic transaction debugging profile). This is
used to interactively debug CICS non-terminal transactions or for
troubleshooting programs run with:

(TEST(ERROR, ,NOPROMPT,))

Terminal Id, Transaction Id (blank)
Any enabled transaction run on a specified terminal uses this
stored debugging profile (generic terminal debugging profile).

Terminal Id, Transaction Id
Debugging profile applies only to enabled corresponding
transaction running on corresponding terminal (specific for terminal
and transaction).

When the application is run, during the initialization of the first enclave, the profile
presented back to LE/VSE (and hence Debug Tool) is that with the narrowest
scope, that is, a profile for a specific terminal and transaction takes precedence
over one for a specific terminal (generic transaction) which takes precedence over
the generic transaction profile.

Modifying Other Options

You can dynamically change any other LE/VSE options defined in your CICS
installation as overrideable except the STACK option. For additional information
about LE/VSE options, see the various LE/VSE publications or contact your CICS
system programmer.

DTCN Data Entry Errors
DTCN performs data verification on the data entered in the DTCN panel:

When DTCN discovers an error it places the cursor in the erroneous field and
displays a message. You can use context sensitive help (PF1) to find what is
wrong with the input.

Chapter 7. Using Debug Tool in Different Modes and Environments 113

Using Debug Tool in Different Modes and Environments

Once you have entered your debug requirements and saved them, you can start
the application. Debug Tool will run according to the options you have specified.

After you have finished debugging your program, use DTCN again to turn off your
debugging profile. While your program is being tested, you do not need to remove
EQADCCXT from the phase; in fact, it's a good idea to leave it there for the next
time you want to invoke Debug Tool. You should, however, remove EQADCCXT
from the phase before you migrate your program to production.

Preparing and Using CEEUOPT to Invoke Debug Tool under CICS

You can include a user run-time options module, CEEUOPT, to define TEST
run-time options. For instructions on how to create the CEEUOPT run-time options

module using the CEEXOPT macro, follow steps 1 to|4 on page 116,

Debug Tool runs in the mode defined in the run-time TEST option you supplied
(normally Single Terminal mode, although you could provide a primary commands
file and a log file, and not use a terminal at all).

To invoke Debug Tool, run the application. Don't forget to remove the CEEUOPT
containing your run-time TEST option when you have finished debugging your
program.

For information on the run-time TEST option, see[Using the Run-Time TEST]
[Option” on page 33}

Preparing and Using Compile-Time Directives To Invoke Debug Tool

under CICS

In addition to using the user run-time options module, CEEUOPT, to specify the
TEST run-time option, you can specify the option in the source of your C or PL/I

program. For more information, see ['Specifying Run-Time TEST Option with]
ragma runopts in C” on page 41 or|“Specifyinq Run-Time TEST Option With|
[PLIXOPT string in PL/I” on page 41]

Note: For COBOL, you will need to include CEEUOPT to specify run-time TEST
options as there is no other way to pass run-time options in COBOL.

To request the program itself to invoke Debug Tool, you can code calls to the
LE/VSE callable service CEETEST or, for PL/I programs, the PL/I built-in
subroutine PLITEST. For more information, see [“Invoking Debug Tool with|
CEETEST” on page 43| or[nvoking Debug Tool with PLITEST” on page 51l
Whenever Debug Tool is invoked by a call to CEETEST or PLITEST, it is invoked
in the mode specified by the suboptions in the TEST or NOTEST run-time option.

Restrictions When Debugging Under CICS

The following restrictions apply when debugging programs with the Debug Tool in a
CICS environment:

e The ctest() function with CICS does nothing.

e The CIND transaction is a special Debug Tool service transaction, and is not
intended for activation by direct terminal input. If CIND is invoked via terminal
entry, it will return to the caller (no function is performed).

e Applications which issue EXEC CICS POST cannot be debugged in Dual
Terminal mode.

114 Debug Tool/VSE V1R1 User's Guide and Reference

Using Debug Tool in Different Modes and Environments

e The JCL for your CICS startup job might not include all the JCL for the Debug
Tool files you refer to during your debug session. Therefore, you should refer
to all Debug Tool files, including source files, the log file, USE files, and
preferences file, by their full names. Sublibrary member names should include
the name of the library and sublibrary, as well as the member name and type.
SAM ESDS files and sequential disk files should be referred to by their full
file-ids.

Important: Debug Tool uses VSE operating system services, not CICS
services, to perform I/O on the files it uses. Therefore, you should only
use Debug Tool in a CICS development environment. Using Debug
Tool in a CICS production environment might impact the performance of
your CICS system.

e CICS does not support an attention interrupt from the keyboard.

e The log file is not automatically started. You need to use the SET LOG ON
command.

e Ensure that you allocate a log file big enough to hold all the log output from a
debug session, because the log file is truncated after it becomes full. (A
warning message is not issued before the log is truncated.)

Debugging DL/l Programs

When you are planning to use Debug Tool to debug your DL/I programs, certain
steps need to be taken. These steps are described in detail below.

Programming Considerations
When using Debug Tool to debug your DL/I application programs:

* Do not call CEETEST or _ ctest. Instead, use the run-time options module
CEEUOPT (shown in|Figure 29 on page 117), to specify the TEST parameter.

* For COBOL, the following rules apply:

— Do not use the ENTRY ‘'anyname' USING statement. Instead, code the
USING clause on the PROCEDURE DIVISION statement.

— If your COBOL program calls other COBOL programs that you also want to
debug, do not use ENTRY statements in the called programs. The
program name must be the same as its entry point name. Debug Tool
cannot locate the program listing when entry points are used.

Program Preparation
Program preparation steps for DL/I include compile and link activities.

Compile Requirements

Your program must be compiled with the compile-time TEST option. Use the
default options to gain maximum debugging facilities.

Important: Ensure that your source (if you are working with C language) or

compiler listing (if you are working with COBOL or PL/I) is stored in a permanent
file that is available to Debug Tool.

Chapter 7. Using Debug Tool in Different Modes and Environments 115

Using Debug Tool in Different Modes and Environments

Link Requirements

With a DL/I program, the run-time TEST option cannot be specified at program
start, and must be coded and assembled in a user-defined run-time options
module. When you link your program include a run-time options module,
CEEUORPT, in your link-edit by doing the following:

1. Find the user run-time options source program CEEUOPT.A in the LE/VSE
installation sublibrary; the default installation sublibrary for this file is
PRD2.SCEEBASE.

2. Change the NOTEST parameter into a default TEST parameter:

old: NOTEST=(ALL,*,PROMPT,'"),
new: TEST=(,*,;,*),
Note: To invoke a full-screen debugging session the MFI suboption must be
specified, for example:
new: TEST=(,*,;,MFI%vtam lu:),

where vtam_lu is the VTAM terminal you wish Debug Tool to connect
to.

3. Assemble the CEEUOPT program and keep the object code.
4. Link-edit the CEEUOPT object code with any program to invoke Debug Tool.

[Figure 29 on page 117] shows the modified assembler program, CEEUOPT.

116 Debug Tool/VSE V1R1 User's Guide and Reference

Using Debug Tool in Different Modes and Environments

*/**/

[

*/% LICENSED MATERIALS - PROPERTY OF IBM

[

/ 5686-094

(C) COPYRIGHT IBM CORP. 1991, 1996

*/% ALL RIGHTS RESERVED.

[
[
[
[
* [
[
[

US GOVERNMENT USERS RESTRICTED RIGHTS - USE, DUPLICATION OR
DISCLOSURE RESTRICTED BY GSA ADP SCHEDULE CONTRACT WITH IBM

CORP.

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

*/**/

CEEUOPT CSECT

CEEUOPT AMODE ANY
CEEUOPT RMODE ANY
CEEXOPT ABPERC=(NONE),

DC
DC
END

ABTERMENC= (RETCODE) ,

AIXBLD= (OFF),

ALL31=(OFF),

ANYHEAP= (16K, 8K, ANYWHERE , FREE) ,
BELOWHEAP= (8K, 4K, FREE),
CBLOPTS=(ON),

CBLPSHPOP=(ON),

CHECK=(ON),

COUNTRY=(US) ,

DEBUG=(ON),
DEPTHCONDLMT=(10),
ENVAR=('"),

ERRCOUNT=(20) ,

HEAP= (32K, 32K, ANYWHERE, KEEP, 8K, 4K) ,
LIBSTACK= (8K, 4K, FREE) ,
MSGFILE=(SYSLST),

MSGQ=(15),

NATLANG= (UEN) ,

TEST=(,*,5,%),

RPTOPTS=(OFF),

RPTSTG=(OFF),

RTEREUS= (OFF),

STACK= (128K, 128K, BELOW,KEEP) ,
STORAGE= (NONE , NONE,, NONE, 8K) ,
TERMTHDACT= (TRACE) ,

TRACE= (OFF, 4K, DUMP, LE=0) ,
TRAP=(ON),

UPSI=(00000000),

XUFLOW= (AUTO)

C'5686-094 (C) COPYRIGHT IBM CORP. 1991, 1996. '
C'LICENSED MATERIALS - PROPERTY OF IBM'

DX DX XX XX XX > 3K 3K 3K 3K X XX XX X X X X X X X X X X X X X X X X

Figure 29. Run-Time Options Module CEEUOPT

The user run-time options program can be assembled with predefined TEST

run-time options to establish defaults for one or more applications. Link-editing an
application with this program results in the default options when that application is

invoked.

Chapter 7. Using Debug Tool in Different Modes and Environments

117

Using Debug Tool in Different Modes and Environments

| For C and PL/I Only |

It is possible to use a run-time directive within the program, such #pragma runopts
for C and PLIXOPT for PL/I, to invoke Debug Tool. See E‘Sgecifying Run-Time|

[TEST Option with #pragma runopts in C” on page 41|and |“Specifyinq Run-Time|
[TEST Option with PLIXOPT string in PL/I" on page 41| for more information.

| End of For C and PL/I Only

Using Debug Tool with DL/l Programs
DL/l programs can be debugged in either batch or interactive mode. When using
batch mode you must know the exact Debug Tool commands you want to have
executed during the test, and include them in the primary commands file. In
interactive mode, the debugging commands can be entered interactively.

Batch Mode

In order to debug your program with Debug Tool while in batch mode, follow these
steps:

1. Make sure the Debug Tool modules are available. This might involve including
them as part of a library search chain (specified using the LIBDEF JCL
statement).

2. Specify your debug commands in the primary commands file.

3. Invoke the program with standard job control statements.

Interactive Mode

In this mode, you can decide at debug time on the debugging commands to be
issued during the test. To debug your program in this mode, follow these steps:

1. Make sure the Debug Tool modules are available. This might involve including
them as part of a library search chain (specified using the LIBDEF JCL
statement).

2. Invoke the program with standard job control statements.

After your program has been initiated, debug your program by issuing the required
Debug Tool commands.

Note: If your source is not displayed in the Source window when you launch
Debug Tool, check that the source or listing file name corresponds to the
member name or filename of your source or listing file. For more
information see [PANEL Command (Full-Screen Mode)” on page 28

[DEFAULT LISTINGS” on page 307, and['SET SOURCE” on page 322

Debugging SQL/DS Programs

When you are planning to use Debug Tool to debug your SQL/DS programs,
certain steps need to be taken. These steps are described in detail below.

118 Debug Tool/VSE V1R1 User's Guide and Reference

Using Debug Tool in Different Modes and Environments

Programming Considerations
There are no special coding techniques for any SQL/DS programs you might want

to debug using Debug Tool. For details on how to code your program to access a
SQL/DS database, see the relevant HLL Programming Guide and SQL/Data
System Application Programming for VSE.
To communicate with SQL/DS, you should:

e Delimit SQL statements with EXEC SQL and END-EXEC statements

e Declare SQLCA in working storage

e Declare program variables

e Code the appropriate SQL statements
Test the SQL/DS return codes

Program Preparation

Program preparation includes the SQL/DS preprocessor, the compiler, the LE/VSE
prelinker, and the linkage editor.

Preprocessor Requirements

Before your program can be compiled, the SQL statements must be prepared using
the SQL/DS preprocessor. For details about the preprocessor, see SQL/Data
System Application Programming for VSE. No special preparations are needed in
the preprocessor step to use Debug Tool.

When debugging a program containing SQL, keep the following in mind:

e The SQL preprocessor replaces all the SQL statements in the program with
language statements. The modified source output from the preprocessor
contains the original SQL statements in comment form. For this reason, the
source or listing view displayed during a debugging session can look very
different from the original source.

* The language code inserted by the SQL preprocessor invokes the SQL access
module for your program. You can halt program execution at each call to a
SQL module and immediately following each call to a SQL module, but the
called modules cannot be debugged.

Compile Requirements
The output from the preprocessor must be used as input to the compiler. To debug
your program with Debug Tool, use the compile-time TEST option. A description of
TEST is found in one of the following sections:

|“Comgi|ing a C Program with the Compile-Time TEST Option” on page 12|
|“Com§i|iﬁq a COBOL Program with the Compile-Time TEST Option” on]
|§aqe 16

[FCompiling a PL/l Program_ with the Compile-Time TEST Option” on page__19 |

The suboptions of the compile-time TEST option control the production of such
debugging aids as dictionary tables and program hooks that Debug Tool needs in
order to debug your program. The choices you make when compiling your program
can affect the amount of Debug Tool function available during your debugging

Chapter 7. Using Debug Tool in Different Modes and Environments 119

Using Debug Tool in Different Modes and Environments

session. When a program is under development, you should compile it with
TEST(ALL) to get the full capability of Debug Tool.

Important: Ensure that the source file produced by the SQL/DS preprocessor (if
you are working with C language) or compiler listing file (if you are working
with COBOL or PL/I) is stored in a permanent file that is available to Debug
Tool.

Link Requirements

The output from the compiler must then be linked into your program phase
sublibrary. To define TEST run-time options you need to perform one of the
following actions:

1. If you are running your SQL/DS program in multiple user mode you can pass
parameters directly to the program. This means you can pass TEST run-time
options to the program to invoke Debug Tool without needing to specify them in
a CEEUOPT object module.

2. If you are running in single user mode you must link-edit a CEEUOPT object
with your program to specify the appropriate TEST options. You can include a
user run-time options module, CEEUOPT, to define TEST run-time options.
For instructions on how to create the CEEUOPT run-time options module using

the CEEXOPT macro, follow steps 1 to|4 on page 116

3. It is possible to use a run-time directive within the program, such as #pragma
runopts(test) for C, or PLIXOPT for PL/I, to invoke Debug Tool. Refer to
[‘Using Alternative Debug Tool Invocation Methods” on page 43|for more
details.

| For C Only

When running Debug Tool, links or calls to C programs linked with AMODE 24 are
not supported if the C library phases CEEEV003 and EDCZ24 are loaded in the
31-bit SVA or above the line in a partition that spans the 16MB line. To run any
24-bit C program under Debug Tool, CEEEV003 and EDCZ24 must be loaded
below the line.

| End of For C Only

Using Debug Tool with SQL/DS Programs

SQL/DS programs can be debugged in either batch or full-screen mode. When
using batch mode you must know the exact Debug Tool commands you want to
have executed during the test, and include them in the primary commands file. In
full-screen, the debugging commands can be entered interactively.

Batch Mode

In order to debug your program with Debug Tool while in batch mode, follow these
steps:

1. Make sure the Debug Tool modules are available. This might involve including
them as part of a sublibrary search chain (specified using the LIBDEF JCL
statement).

2. Specify your debug commands in the primary commands file.

120 Debug Tool/VSE V1R1 User's Guide and Reference

Using Debug Tool in Different Modes and Environments

3. Invoke the program with standard job control statements.

Interactive Mode
In this mode, you can decide at debug time which debugging commands to be
issued during the test. To debug your program in this mode, follow these steps:

1. Make sure the Debug Tool modules are available. This might involve including
them as part of a sublibrary search chain (specified using the LIBDEF JCL
statement).

2. Invoke the program with standard job control statements.

After your program has been initiated, debug your program by issuing the required
Debug Tool commands.

Note: If your source is not displayed in the Source window when you launch
Debug Tool, check that the source or listing file name corresponds to the
member name or filename of your source or listing file. For more

information see F[PANEL Command (Full-Screen Mode)” on page 289
[DEFAULT LISTINGS” on page 307, and[*SET SOURCE” on page 322

See also the note (marked Important) in fCompile Requirements” on page 119

The program listing that Debug Tool displays and uses for the debugging session is
the output from the compile step, and thus includes all the SQL/DS expansion code
produced by the SQL/DS preprocessor.

Chapter 7. Using Debug Tool in Different Modes and Environments 121

Using Debug Tool in Different Modes and Environments

122 Debug Tool/VSE V1R1 User's Guide and Reference

Part 2. Language-Specific Information

© Copyright IBM Corp. 1995, 1996 123

Debug Tool Support of Programming Languages

Chapter 8. Debug Tool Support of Programming Languages

This chapter discusses the ways Debug Tool makes it possible for you to debug
programs of different languages, structures, conventions, variables, and methods of
evaluating expressions.

As part of the effort to support multiple high-level programming languages, Debug
Tool has adapted its commands to the different HLLs, enabled you to use
interpretive subsets of commands from the various HLLs, and mapped common
attributes of data types across the languages. It does the following:

e Maps compatible attributes between HLL data types
e Evaluates HLL expressions
 Interprets HLL variables and constants

This chapter also describes the concept of interpretive command subsets,
exceptions and conditions in Debug Tool, and Debug Tool's built-in functions.

A general rule to remember is that Debug Tool tries to let the language itself guide
how Debug Tool works with it. Further information is available in the various HLL
language reference manuals, listed in the bibliography.

Multiple Enclaves and Interlanguage Communication (ILC)

Debugging a multi-enclave ILC application with Debug Tool is supported. However,
keep the following points in mind:

e The SET PROGRAMMING LANGUAGE command can be used to change the
current programming language setting. However, the programming language
setting is limited to the languages currently known to Debug Tool (that is,
languages contained in the current phase).

e Command lists on monitors and breakpoints have an implied programming
language setting, which is the language that was in effect at the time the
monitor or breakpoint was established. This means that if you change the
language setting, errors may result when the monitor is refreshed or the
breakpoint is triggered.

Compatible Attributes Mapped Between HLL Data Types

124

Debug Tool allows you, while working in one language, to declare session variables
you can continue to use after calling in a phase of a different language. See the
Attribute Mapping table in|‘Language Compatible Attributes” on page 246| for more
information on how session data attributes are mapped across programming
languages. Attributes not shown in the table cannot be mapped to other
programming languages.

Also remember that variables with incompatible attributes cannot be accessed from
another programming language.

© Copyright IBM Corp. 1995, 1996

Debug Tool Support of Programming Languages

Debug Tool Evaluation of HLL Expressions

Whenever an expression is entered, Debug Tool will remember the programming
language in effect at that time. When the command is run, the expression will be
passed to the language run time that was in effect when the expression was
entered, which may be different from the one in effect when the expression is run.

When you are entering an expression that will not be run immediately, it is
recommended that all program variables be fully qualified. This will ensure that
proper context information (such as phase, block, etc.) will be passed with the
expression to the language run time when the statement is run. If this is not done,
the context may not be the one you intended when you set the breakpoint, and the
language run time may fail to evaluate the expression.

Debug Tool Interpretation of HLL Variables and Constants

Debug Tool also supports the use of HLL variables and constants, both as a part of
evaluating portions of your test program and in declaring and using temporary
variables.

Three general types of variables are supported by Debug Tool. These are:
e Program variables defined by the HLL compiler's symbol table
e Debug Tool variables denoted by the percent (%) sign

e Temporary, or session, variables declared for a given Debug Tool session and
existing only for the session

Variables

Some variable references require language-specific evaluation, such as pointer
referencing or subscript evaluation. Once again, Debug Tool interprets each case
in the manner of the HLL in question. Below is a list of some of the areas where
Debug Tool accepts a different form of reference depending on the current
programming language:

e Structure qualification

C and PL/I: dot (.) qualification, high-level to low-level
COBOL: IN or OF keyword, low-level to high-level

e Subscripting

C: name [subscriptl][subscript2]...
COBOL and PL/I: name(subscriptl,subscript2,...)

Constants
You can use both string constants and numeric constants. Debug Tool accepts
both types of constants in C, COBOL, and PL/I.

Debug Tool Variables (or Intrinsic Functions)
Debug Tool has reserved several variables to contain its own information. These
variables are denoted by the percent sign (%) as a first character, to distinguish
them from program variables, and can be accessed while testing programs in any
supported HLL.

Chapter 8. Debug Tool Support of Programming Languages 125

Debug Tool Support of Programming Languages

[Table 4 on page 126] shows a list of Debug Tool variables and the languages with
which they can be used. Following the table is a list of their definitions.

Table 4. Descriptions of Debug Tool Variables and Their Corresponding Languages

Debug Tool C PL/ COBOL Description

Variable

%GPRn X X X Represents general-purpose registers.

%FPRNn X X X Represents single-precision floating-point registers.

%LPRn X X X Represents double-precision floating-point registers.

%EPRN X X Represents extended-precision floating-point registers.

%ADDRESS X X X Contains the address of the location where your program was interrupted.

%AMODE X X X Contains the current AMODE of the suspended program (either 24 or 31).

%BLOCK X X X Contains the name of the current block.
Note: The block name provided may not be unique within a compile unit.

%CAAADDRESS X X X Contains the address of the CAA control block associated with the
suspended program.

%CONDITION X X X Contains the name (or number) of the condition identification when Debug
Tool is entered because of an AT OCCURRENCE.

%COUNTRY X X X Contains the current country code.

%CU X Contains the name of the primary entry point of the current program.
Equivalent to %PROGRAM.

%EPA X X X Contains the address of the primary entry point in the currently interrupted
program.

%HARDWARE X X X Identifies the type of hardware where the application is running.

%LINE X X X Contains the current line number. Equivalent to %STATEMENT.

%LOAD X X X Contains the name of the phase of the current program, or an asterisk (*).

%NLANGUAGE X X X Contains the national language currently in use.

%PATHCODE X X X Contains an integer value identifying the type of change occurring when the
program flow changes.

%PLANGUAGE X X X Contains the current programming language.

%PROGRAM X X X Contains the name of the primary entry point of the current compile unit.
Equivalent to %CU.

%RC X X X Contains a return code whenever a Debug Tool command ends.

%RUNMODE X X X Contains a string identifying the presentation mode of Debug Tool.

%STATEMENT X X X Contains the current statement number. Equivalent to %LINE.

%SUBSYSTEM X X X Contains the name of the underlying subsystem, if any, where the program
is executing.

%SYSTEM X X X Contains the name of the operating system supporting the program.

You can use all Debug Tool variables in expressions. Additionally, the first four
variables, representing the various types of registers, can be used as the targets of

assignments.

Note: Use caution when assigning new values to registers. Important program
information can be lost.

Detailed descriptions of the Debug Tool variables follow.

126 Debug Tool/VSE V1R1 User's Guide and Reference

Debug Tool Support of Programming Languages

Modifiable Debug Tool Variables
%GPRO0, %GPR1,...,%GPR15
Represent general-purpose registers at the point of interruption in a program.

%FPRO, %FPR2, %FPR4, %FPR6
Represent single-precision floating-point registers.

%LPRO, %LPR2, %LPR4, %LPR6
Represent the double-precision floating-point registers. They are similar to the
single-precision floating-point registers (%FPRs).

%EPRO, %EPR4
Represent the extended-precision floating-point registers.

Nonmodifiable Debug Tool Variables
%ADDRESS
Contains the address of the location where the program has been interrupted.

%AMODE
Contains the current AMODE of the suspended program. Possible values are
24 or 31.

%BLOCK
Contains the name of the current block.

%CAAADDRESS
Contains the address of the CAA control block associated with the suspended
program.

%CONDITION
Contains the name (or number) of the condition identification when Debug Tool
is entered due to an AT OCCURRENCE.

%COUNTRY
Contains the current country code.

%CU
Contains the name of the primary entry point of the current compile unit.

%CU is equivalent to %PROGRAM.

%EPA
Contains the address of the primary entry point of the currently interrupted
program.

%HARDWARE
Identifies the type of hardware where the application program is running. A
possible value is: 370/ESA.

%LINE
Contains the current line number. This value can include a period, since the
current line can be a statement other than the first statement on a source line.

If the program is at the entry or exit of a block, %LINE contains ENTRY or
EXIT, respectively.

If the line number cannot be determined (for example, a run-time line number
does not exist or the address where the program is interrupted is not in the
program), %LINE contains an asterisk (*).

Chapter 8. Debug Tool Support of Programming Languages 127

Debug Tool Support of Programming Languages

%LINE is equivalent to %STATEMENT.

%LOAD
Contains an asterisk (*) unless the current program is part of a fetched or
called phase. If the current program is part of a fetched or called phase,
%LOAD contains the name of that phase.

%NLANGUAGE
Indicates the national language currently in use. Possible values are:

ENGLISH
UENGLISH
JAPANESE

%PATHCODE
Contains an integer value that identifies the kind of change occurring when the
path of program execution has reached a point of discontinuity and the path
condition is raised.

The possible values vary according to the language of your program. See:

[‘Using Debug Tool Variables in C” on page 140|for your C program

[‘Using Debug Tool Variables in COBOL” on page 167|for your COBOL
program, or

[‘Using Debug Tool Variables in PL/I” on page 181|for your PL/I program.

%PLANGUAGE
Indicates the programming language currently in use.

%PROGRAM
Contains the name of the primary entry point of the current program.

%PROGRAM is equivalent to %CU.

%RC
Contains a return code whenever a Debug Tool command ends.

%RC initially has a value of zero unless the log file cannot be opened, in which
case it has a value of -1.

The %RC return code is a Debug Tool variable. It is not related to the return
code that can be found in Register 15.

%RUNMODE
Contains a string identifying the presentation mode of Debug Tool. Possible
values are:

SCREEN
BATCH

%STATEMENT
Contains the current statement number. This value can include a period, since
the current statement can be one other than the first statement in a source line.

If the program is at the entry or exit of a block, %STATEMENT contains
ENTRY or EXIT, respectively.

If the statement number cannot be determined (for example, a run-time
statement number does not exist or the address where the program is
interrupted is not in the program), %STATEMENT contains an asterisk (*).

128 Debug Tool/VSE V1R1 User's Guide and Reference

Debug Tool Support of Programming Languages

%STATEMENT is equivalent to %LINE.

%SUBSYSTEM
Contains the name of the underlying subsystem, if any, where the program is
executing. Possible values are:

CICS
NONE

%SYSTEM
Contains the name of the operating system supporting the program. The only
possible value is: VSE.

Interpretive Subsets

To allow you to use familiar commands while in a debugging session, Debug Tool
provides an interpretive subset of commands for each language. This consists of
commands that have the same syntax, whether used with Debug Tool or when
writing application programs. You use these commands in Debug Tool as though
you were coding in the original language.

Use the SET PROGRAMMING LANGUAGE command to set the current
programming language to the desired language. The current programming
language determines how commands are parsed. If you set PROGRAMMING
LANGUAGE to AUTOMATIC, every time the current qualification changes to a
phase in a different language, the current programming language is automatically
updated.

The following types of Debug Tool commands have the same syntax (or a subset
of it) as the corresponding statements (if defined) in each supported programming
language:

Assignment These commands allow you to assign a value to a variable or
reference.

Conditional These commands evaluate an expression and control the flow of
execution of Debug Tool commands according to the resulting
value.

Declarations These commands allow you to declare temporary variables.

Looping These commands allow you to program an iterative or logical loop
as a Debug Tool command.

Multiway These commands allow you to program multiway logic in the Debug
Tool command language.

In addition, Debug Tool supports special kinds of commands for some languages.

Qualifying Variables and Changing the Point of View

Each HLL defines a concept of name scoping to allow you, within a single compile
unit, to know what data is referenced when a name is used (for example, if you use
the same variable name in two different procedures). Similarly, Debug Tool defines
the concepts of qualifiers and point of view for the run-time environment to allow
you to be able to reference all variables in a program, no matter how many
subroutines it contains. The assignment x = 5 does not appear difficult for Debug

Chapter 8. Debug Tool Support of Programming Languages 129

Debug Tool Support of Programming Languages

Tool to process. However, if you declare x in more than one subroutine, the
situation is no longer obvious. If x is not in the currently executing compile unit,
you need a way to tell Debug Tool how to determine the proper x.

You also need a way to change Debug Tool's point of view to allow it to reference
variables it cannot currently see (that is, variables that are not within the scope of
the currently executing block or compile unit, depending upon the HLL's concept of
name scoping).

Qualification
Qualification is a method you can use to specify to what procedure or phase a
particular variable belongs. You do this by prefacing the variable with the block,
compile unit, and phase (or as many of these labels as are necessary), separating
each label with a colon (or double colon following the phase specification) and a
greater-than sign (:>), as follows:

PHASE_NAME: :>CU_NAME:>BLOCK_NAME:>object

This procedure, known as explicit qualification, lets Debug Tool know precisely
where the variable is.

PHASE_NAME is the phase name. It is required only when the application
consists of multiple phases and when you want to change the qualification to other
than the current phase. PHASE_NAME can be the Debug Tool variable %LOAD.

CU_NAME is the compile unit name. The CU_NAME is required only when you
want to change the qualification to other than the currently qualified compile unit.
CU_NAME can be the Debug Tool variable %CU.

BLOCK_NAME is the program block name. The BLOCK_NAME is required only
when you want to change the qualification to other than the currently qualified
block. BLOCK_NAME can be the Debug Tool variable %BLOCK.

| PL/I only |

In PL/I, the primary entry name of the external procedure is the same as the
compile unit name. When qualifying to the external procedure, the procedure name
of the top procedure in a compile unit fully qualifies the block. Specifying both the
compile unit and block name results in an error. For example:

PHASEL::>PROCl:>variable

is valid.
PHASE1::>PROC1:>PROC1:>variable

is not valid.

| End of PL/I only

You do not have to preface variables in the currently executing compile unit. These
are already known to Debug Tool; in other words, they are implicitly qualified.

In order for attempts at qualifying a variable to work, each block must have a name.

Blocks that have not received a name are named by Debug Tool, using the form:
%BLOCKnNNN, where nnn is a number that relates to the position of the block in the

130 Debug Tool/VSE V1R1 User's Guide and Reference

Debug Tool Support of Programming Languages

program. To find out the Debug Tool's name for the current block, use the
DESCRIBE PROGRAMS command.

Changing the Point of View
The point of view is usually the currently executing block. You can get to
inaccessible data by changing the point of view using the SET QUALIFY command
with the operand

PHASE_NAME: :>CU_NAME:>BLOCK_NAME

Each time you update any of the three Debug Tool variables %CU, %PROGRAM,
or %BLOCK, all four variables (%CU, %PROGRAM, %LOAD, and %BLOCK) are
automatically updated to reflect the new point of view. If you change %LOAD using
SET QUALIFY LOAD, only %LOAD is updated to the new point of view. The other
three Debug Tool variables remain unchanged. For example, suppose your
program is currently suspended at PHASEX::>CUX:>BLOCKX. Also, the phase
PHASEZ, containing the compile unit CUZ and the block BLOCKZ, is known to
Debug Tool. The settings currently in effect are:

%LOAD = PHASEX
%CU = CUX
%PROGRAM = CUX
%BLOCK = BLOCKX

If you enter any of the following commands:
SET QUALIFY BLOCK blockz;

SET QUALIFY BLOCK cuz:>blockz;

SET QUALIFY BLOCK phasez::>cuz:>blockz;
the following settings are in effect:

%LOAD = PHASEZ
%CU = CUZ
%PROGRAM = CUZ
%BLOCK = BLOCKZ

If you are debugging a program that has multiple enclaves, SET QUALIFY can be
used to identify references and statement numbers in any enclave by resetting the
point of view to a new block, compile unit, or phase.

Debug Tool Handling of Conditions and Exceptions

To suspend program execution just before your application would terminate
abnormally, start your application with the following options:

TRAP (ON)
TEST(ALL, *,NOPROMPT, *)

When a condition is signaled in your application, Debug Tool prompts you and you
can then dynamically code around the problem. For example, you can initialize a
pointer, allocate memory, or change the course of the program with the GOTO
command. You can also indicate to LE/VSE's condition handler, that you have
already handled the condition by issuing a GO BYPASS command. Beware that
some of the code that follows the instruction that raised the condition may be
relying on data that was not properly stored or handled.

Chapter 8. Debug Tool Support of Programming Languages 131

Debug Tool Support of Programming Languages

When debugging with Debug Tool, you have a choice of either instructing Debug
Tool to handle program exceptions and conditions, or passing them on to your own
exception handler. Programs also have access to LE/VSE services to deal with
program exceptions and conditions.

Condition Handling in Debug Tool

132

You can use either or both of the following methods during a debugging session to
ensure that Debug Tool gains control at the occurrence of HLL conditions:

* If you specify TEST(ALL) as a run-time option when you begin your debugging
session, Debug Tool gains control at the occurrence of most conditions.

Note: Debug Tool recognizes all LE/VSE conditions that are detected by the
LE/VSE error handling facility.

e You can also direct Debug Tool to respond to the occurrence of conditions by
using the AT OCCURRENCE command to define breakpoints. These
breakpoints halt processing of your program when a condition is raised, after
which Debug Tool is given control. It then processes the commands you
specified when you defined the breakpoints. For more information on
OCCURRENCE breakpoints, see ‘AT OCCURRENCE” on page 225,

For a description of HLL conditions, see the corresponding language references
and the LE/VSE Programming Guide.

There are several ways a condition can occur, and several ways it can be handled.

When a Condition Can Occur
A condition can occur during your Debug Tool session when:

e A C application program executes a raise statement.
* A PL/I application program executes a SIGNAL statement.
e The Debug Tool command TRIGGER is executed.

e Program execution causes a condition to exist. In this case, conditions are not
raised at consistency points (the operations causing them can consist of
several machine instructions, and consistency points usually occur at the
beginnings and ends of statements).

* The setting of WARNING is OFF (for C and PL/I).

What Happens When a Condition Occurs

When an HLL condition occurs and you have defined a breakpoint with associated
actions, those actions are first performed. What happens next depends on how the
actions end.

e Your program's execution can be terminated with a QUIT command.

e Control of your program's execution can be returned to the HLL exception
handler, so that processing proceeds as if Debug Tool had never been invoked
(even if you have perhaps used it to change some variable values, or taken
some other action).

e Control of your program's execution can be returned to the program itself,
bypassing any further processing of this exception either by the user program
or the environment.

Debug Tool/VSE V1R1 User's Guide and Reference

Debug Tool Support of Programming Languages

e PL/I allows GO TO out of block;, so execution control can be passed to some
other point in the program.

* If no circumstances exist explicitly directing the assignment of control, your
primary commands file or terminal is queried for another command.

If, after the execution of any defined breakpoint, control returns to your program
with a GO command, the condition is raised again in the program (if possible and
still applicable). If you use a GOTO to bypass the failing statement, you also
bypass your program's error handling facilities.

Exception Handling within Expressions (C and PL/I only)
When an exception such as division by zero is detected in a Debug Tool
expression, you can use the Debug Tool command SET WARNING to control
Debug Tool and program response. During an interactive Debug Tool session,
such exceptions are sometimes due to typing errors and as such are probably not
intended to be passed to the program. If you do not want errors in Debug Tool
expressions to be passed to your program, use SET WARNING ON. Expressions
containing such errors are terminated, and a warning message displayed.

However, you might want to pass an exception on to your program, perhaps to test
an error recovery procedure. In this case, use SET WARNING OFF.

Requesting an Attention Interrupt During Interactive Sessions

During an interactive Debug Tool session you can request an attention interrupt, if
necessary, by pressing the attention key on your keyboard. For example, you can
stop what appears to be an unending loop, stop the display of voluminous output at
your terminal, or stop the execution of the STEP command.

LE/VSE run-time option TRAP should be set to ON in order for attention interrupts
that are recognized by the operating system to be also recognized by LE/VSE. The
test level suboption of the run-time TEST option should not be set to NONE. See
LE/VSE Programming Guide.

| For CICS Only |

An “attention interrupt” key is not supported in CICS.

| End of For CICS Only

The attention key might not be marked ATTN on your keyboard. Often the PA1
key is used.
When you request an attention interrupt, control is given to Debug Tool:

e At the next hook if Debug Tool has previously gained control or if you specify
either TEST(ERROR) or TEST(ALL) or have specifically set breakpoints

e Ata ctest() or CEETEST call

e When an HLL condition is raised in the program, such as SIGINT in C

Chapter 8. Debug Tool Support of Programming Languages 133

Debug Tool Support of Programming Languages

Debug Tool's Built-in Functions

Debug Tool provides you with several built-in functions, available while debugging
programs in all supported languages, which allow you to perform variable
manipulations. These functions are distinguished by a percent sign (%) as the first
character. Below is a brief description of each function, including its proper syntax.

For Use with C, COBOL, and PL/I
The following Debug Tool built-in functions are for use with C, COBOL, and PL/I.

%HEX

You can use %HEX with the LIST command to display the hexadecimal value of an
operand.

A\
A

»»—%HEX— (—reference—)

reference
A valid COBOL or PL/I reference, or C 1value.

%STORAGE
You can use %STORAGE to reference storage by address and length. You can
use this function only in conjunction with commands employing AT CHANGE.

\ 4
A

»»—%STORAGE—(—address B : h—J)
,—lengt

address
The starting address of storage to be monitored for changes. This must be an
0x constant in C, an H constant in COBOL, or a PX constant in PL/I.

length
The number of bytes of storage to be monitored for changes. This must be a
positive integer constant. The default value is 1.

For Use with C and PL/I

The following Debug Tool built-in functions are for use only with C and PL/I
programs.

%INSTANCES
You can use %INSTANCES to provide the maximum value of %RECURSION (the
most recent recursion number) for a given block.

»»—%INSTANCES— (—reference—)

\4
A

reference
An automatic variable or a subroutine parameter. If necessary, you can use
qualification to specify the variable.

134 Debug Tool/VSE V1R1 User's Guide and Reference

Debug Tool Support of Programming Languages

%RECURSION

You can use %RECURSION to access an automatic variable or a parameter in a
specific instance of a recursive procedure.

»»—%RECURSION—(—reference—,—expression—)

A\
A

reference
An automatic variable or a subroutine parameter. If necessary, you can use
qualification to specify the variable.

expression
The recursion number of the variable or parameter. The oldest recursion is
referenced by %RECURSION(var, 1) and the most recent by
%RECURSION(var, %INSTANCES(var)).

For Use with PL/I

The following Debug Tool built-in function is for use only with PL/I programs.

%GENERATION
You can use %GENERATION to access a specific generation of a controlled
variable in your program.

»»>—%GENERATION— (—reference—,—expression—)

\ 4
A

reference
A controlled variable.

expression
The generation number (N) of a controlled variable (X), where:
1 < N < ALLOCATION(X)

The oldest instance of X is referenced by %GENERATION(X,1), and the most
recent by %GENERATION(X,ALLOCATION(X)).

Displaying Environmental Information

You can also use the DESCRIBE command to display a list of attributes applicable
to the current run-time environment. The type of information displayed varies from
language to language.

Chapter 8. Debug Tool Support of Programming Languages 135

Debug Tool Support of Programming Languages

Issuing DESCRIBE ENVIRONMENT displays a list of open files and a list of
conditions being monitored by the run-time environment. For example, if you enter
DESCRIBE ENVIRONMENT while debugging a C program, you might get the
following output:

Currently open files
DD:SYSLST
stdout
The following conditions are enabled:
SIGFPE
SIGILL
SIGSEGV
SIGTERM
SIGINT
SIGABRT
SIGUSR1
SIGUSR2
SIGABND

Low-Level Debugging

Debug Tool is not an assembly-level debug tool, but you might find it useful to
monitor registers (general-purpose and floating-point) while stepping through your
code and assembly listing by using the LIST REGISTERS command. The compiler
listing includes the pseudo assembly code, including Debug Tool hooks. You can
watch the hooks that you stop on and watch expected changes in register values
step by step in accordance with the pseudo assembly instructions between the
hooks. You can also modify the value of machine registers while stepping through
your code.

For example, here is a C program that you can run:

int dbl(int j) /* line 1 %/
{ /* line 2 */
return 2*j; /* line 3 */
} /* line 4 */
int main(void)
{
int i;
i=10;

return db1(i);
1

With the compile-time options TEST(ALL),LIST, your pseudo assembly listing will
contain something like:

% int db1(int j) /* line 1 %/
ST rl,152(,r13)

* /* line 2 */
EX r0,HOOK. . PGM-ENTRY

* return 2*j; /* line 3 =/
EX r0,HOOK. .STMT
L r15,152(,r13)
L r15,0(,r15)

SLL 15,1
B @5L2
DC A®5L2-ep)
NOPR
@5L1 DS 6D
«) /* Vine 4 */
@52 DS @D

EX r0,HOOK. . PGM-EXIT

136 Debug Tool/VSE V1R1 User's Guide and Reference

Debug Tool Support of Programming Languages

Issue the command:
MONITOR LIST REGISTERS

to continuously monitor the registers. After a few steps, Debug Tool halts on line 1
and you have halted on the program entry hook seen above. Another STEP takes
you to line 3 and you have halted on the statement hook. The next STEP takes
you to line 4 and you have halted on the program exit hook. In accord with the
pseudo assembly listing, only Register 15 has changed during this STEP, and it
contains the return value of the function. In the Monitor window, Register 15 now
has the value 0x00000014 (decimal 20) as expected.

You can change the value from 20 to 8 just before returning from db1() by issuing
the command:

%GPR15 = 8 ;

You can list the contents of storage in various ways. Using the LIST REGISTERS
command, you can receive a list of the contents of the general-purpose registers or
the floating-point registers.

You can also monitor the contents of storage by specifying a dump-format display
of storage. To accomplish this, use the LIST STORAGE command. You can
specify the address of the storage that you want to view, as well as the number of
bytes.

Chapter 8. Debug Tool Support of Programming Languages 137

Using Debug Tool with C Programs

Chapter 9. Using Debug Tool with C Programs

This chapter provides information on using C variables and expressions with Debug
Tool. It covers the Debug Tool subset of C commands and reserved words,
accessing program variables, declaring temporary variables (also known as session
variables), displaying values of C variables, assigning values to C variables, and
using Debug Tool variables.

It also covers expressions, including discussions of function calls, operators, and C
unique statements; and qualification and multiple phases.

Debug Tool Commands

Debug Tool's command language is a subset of C statements and has the same
syntactical requirements. Debug Tool allows you to work in a language you are
familiar with so learning a new set of commands is not necessary.

The interpretive subset of C statements recognized by Debug Tool is shown in
[Table 16 on page 346| This subset of statements is valid only when the current
programming language is C.

For specific usage notes concerning each command, see the appropriate section of
|Part 3, “Debug Tool Reference” on page 193]

In addition to the subset of C statements that you can use is a list of reserved
keywords used and recognized by C that you cannot abbreviate, use as variable
names, or use as any other type of identifier. This list is shown in
These keywords are reserved only when the current programming
language is C.

For explanations of command usage and keyword meaning, see IBM C for
VSE/ESA Language Reference.

Using C Variables with Debug Tool

Debug Tool can process all program variables that are valid in C. It allows you to
assign and display the values of variables during your session. It also allows you
to declare temporary variables with the recognized C declarations to suit your
testing needs.

Accessing Program Variables

138

Debug Tool obtains information about a program variable by name using the
symbol table built by the compiler. If you specify TEST(SYM) at compile time, the
compiler builds a symbol table that allows you to reference any variable in the
program.

See [‘Compiling a C Program with the Compile-Time TEST Option” on page 12|for
more details.

© Copyright IBM Corp. 1995, 1996

Using Debug Tool with C Programs

Displaying Values of C Variables or Expressions

To display the values of variables or expressions, issue the LIST command. The
LIST command causes Debug Tool to log and display the current values (and
names if requested) of variables, including the evaluated results of expressions.
See [‘LIST Command” on page 272| for more information.

Suppose you want to display the program variables X, row[X], and co1[X], and
their values at line 25. If you issue the following command:

AT 25 LIST (X, row[X], col[X]); GO;

Debug Tool sets a breakpoint at line 25 (AT), begins execution of the program
(GO), stops at line 25, and displays the variable names and their values.

If you want to see the result of their addition, enter:
AT 25 LIST (X + row[X] + col[X]); GO;

Debug Tool sets a breakpoint at line 25 (AT), begins execution of the program
(GO), stops at line 25, and displays the result of the expression.

Put commas between the variables when listing more than one. If you do not want
to display the variable names when issuing the LIST command, enter LIST
UNTITLED.

You can also list variables with the printf function call as follows:
printf ("X=%d, row=%d, col=%d\n", X, row[X], col[X]);

The output from printf, however, does not appear in the Log window and is not
recorded in the log file unless you set INTERCEPT ON FILE stdout.

Declaring Temporary Variables

You might want to declare temporary variables, also known as session variables,
for use during the course of your session. You cannot initialize temporary variables
in declarations. However, you can use an assignment statement or function call to
initialize a temporary variable.

As in C, keywords can be specified in any order. Variable names up to 255
characters in length can be used. Identifiers are case-sensitive, but if you want to
use the session variable when the current programming language changes from C
to another HLL, the variable must have an uppercase name and compatible
attributes. For more information see [Table 11 on page 247|

To declare a floating-point variable called maximum, enter the following C
declaration:

double maximum;

In Debug Tool you can only declare scalars, arrays of scalars, structures, unions,
and pointers for all of these.

If you declare a temporary variable with the same name as a programming
variable, the temporary variable hides the programming variable. To reference the
programming variable, you must qualify it. For example:

main:>x for the program variable x
x for the session variable x

Chapter 9. Using Debug Tool with C Programs 139

Using Debug Tool with C Programs

Session variables remain in effect for the entire debug session, unless they are
cleared using the CLEAR command.

For more on qualification, see [‘Using Qualification for C” on page 156 For more

on declarations, see [Declarations (C)” on page 247

Assigning Values to C Variables

To assign a value to a C variable, you use an assignment expression. See
[‘Expression Command (C)” on page 261| for syntax information. Assignment
expressions assign a value to the left operand. The left operand must be a
modifiable Tvalue. An lvalue is an expression representing a data object that can
be examined and altered.

C contains two types of assignment operators: simple and compound. A simple
assignment operator gives the value of the right operand to the left operand.

The following example demonstrates how to assign the value of number to the
member employee of the structure payroll:

payroll.employee = number;

Compound assignment operators perform an operation on both operands and give
the result of that operation to the left operand. For example, this expression gives
the value of index plus 2 to the variable index:

index += 2

Debug Tool supports all operators except the tenary operator, as well as any other
full C language assignments and function calls to user or C library functions. For
more on function calls, see[*Function Calls” on page 146]

Using Debug Tool Variables in C

Debug Tool variables, as shown in Table 5, provide information about your
program that you can use during your session. These variables are distinguished
by a percent character (%) as the first character in their names. To display the
values of any of them during your session, use the LIST command.

Table 5 (Page 1 of 2). C Attributes for Debug Tool Variables

Debug Tool C

Variable Attributes Description

%GPRn signed int Represents general-purpose registers.

%FPRn float Represents single-precision floating-point registers.

%LPRnN double Represents double-precision floating-point registers.

%EPRN long Represents extended-precision floating-point registers.
double

%ADDRESS void * Contains the address of the location where your

program was interrupted.

%AMODE signed Contains the current AMODE of the suspended program
short int (either 24 or 31).

%BLOCK unsigned Contains the name of the current block.
char(]

140 Debug Tool/VSE V1R1 User's Guide and Reference

Using Debug Tool with C Programs

Table 5 (Page 2 of 2). C Attributes for Debug Tool Variables

Debug Tool C
Variable Attributes Description
%CAAADDRESS void * Contains the address of the CAA control block
associated with the suspended program.
%CONDITION unsigned Contains the name (or number) of the condition
charf] identification when Debug Tool is entered because of an
HLL or LE/VSE condition.
%COUNTRY unsigned Contains the current country code.
char(]
%CU unsigned Contains the name of the current compilation unit.
charf] Equivalent to %PROGRAM.
%EPA void * Contains the address of the primary entry point in the
currently interrupted program.
%HARDWARE unsigned Identifies the type of hardware where the application is
char(] running.
%LINE unsigned Contains the current line number.
char(] Equivalent to %STATEMENT.
%LOAD unsigned Contains the name of the phase of the current program.
char(]
%NLANGUAGE unsigned Contains the national language currently being used.
char(]
%PATHCODE signed Contains an integer value identifying the type of change
short int occurring when Debug Tool is entered because of a
path breakpoint.
%PLANGUAGE unsigned Contains the current programming language.
char(]
%PROGRAM unsigned Contains the name of the primary entry point of the
charf] current program.
Equivalent to %CU.
%RC signed Contains a return code whenever a Debug Tool
short int command ends.
%RUNMODE unsigned Contains a string identifying the presentation mode of
char(] Debug Tool.
%STATEMENT unsigned Contains the current statement number.
charf] Equivalent to %LINE.
%SUBSYSTEM unsigned Contains the name of the underlying subsystem, if any,
char(] where the program is executing.
%SYSTEM unsigned Contains the name of the operating system supporting
char(] the program.

You can use all Debug Tool variables in expressions. Additionally, the variables
representing general and floating-point registers are modifiable and can be used as
the targets of assignment commands.

Note: When modifying register values, do not modify the base register.

Detailed descriptions of the Debug Tool variables follow.

Chapter 9. Using Debug Tool with C Programs 141

Using Debug Tool with C Programs

142

%GPRO0, %GPR1,...,%GPR15
Represent general-purpose registers at the point of interruption in a C program.
You can use them in expressions:

Tist (%GPR5 + 10);
and as targets of assignments:
%GPR5 = name_table;

Notes:

 If you change a %GPRn register, the change is reflected when you
resume program execution.

e Only %GPR12 can be used at external entry.

e Assigning new values to variables %GPR12 and %GPR13 does not
result in an error, however, subsequent processing by Debug Tool
will reset them to their previous values.

 If you change %GPR3 in an expression, the base register in the
program can be lost.

%FPRO, %FPR2, %FPR4, %FPR6
Represent single-precision floating-point registers and are equivalent to float
variables. You can use them in expressions:

x = %FPR4 / 6.3

and as targets of assignments:
%FPRO = 3.14152

%LPRO, %LPR2, %LPR4, %LPR6
Represent the double-precision floating-point registers and are equivalent to
double variables. Similar to the single-precision floating-point registers
(%FPRs), you can use these registers in expressions and as targets of
assignments.

%EPRO, %EPR4
Represent the extended-precision floating-point registers, and are equivalent to
Tong double variables. Similar to the single-precision floating-point registers
(%FPRs), you can use these registers in expressions and as targets of
assignments.

%ADDRESS
Contains the address of the location where the program was interrupted.

%AMODE
Contains the current AMODE of the suspended program. Possible values are
24 or 31.

%BLOCK
Contains the name of the current block. To display the name of the current
block, you can use the LIST command or issue:

DESCRIBE PROGRAM;

You can change or override the value of %BLOCK by using the SET QUALIFY
command.

Debug Tool/VSE V1R1 User's Guide and Reference

Using Debug Tool with C Programs

%CAAADDRESS
Contains the address of the CAA control block associated with the suspended
program.

%CONDITION
Contains the name (or number) of the condition identification when Debug Tool
is entered because of an HLL or LE/VSE condition.

%COUNTRY
Contains the current country code.

%CU
Contains the name of the primary entry point of the current program.

You can change or override the value of %CU by using the QUALIFY
command.

%CU is equivalent to %PROGRAM.

%EPA
Contains the address of the primary entry point of the currently interrupted
program.

%HARDWARE
Identifies the type of hardware where the application program is running. A
possible value is 370/ESA.

%LINE
Contains the current line (statement) number. This value can include a period
since the current line can be a statement other than the first statement on a
source line. For example, if 5LINE = 5.5, the current statement is the fifth
statement on the fifth source line.

If the program is at the entry or exit of a block, %LINE contains ENTRY or
EXIT respectively.

If the line number cannot be determined (for example, if a run-time line number
does not exist or the address where the program is interrupted is not in the
program), %LINE contains an asterisk (*).

%LINE is equivalent to %STATEMENT.

%LOAD
Contains the name of the currently qualified phase and is used when an
unqualified reference to a program or variable is made. If the currently
qualified phase is the one initially loaded, %LOAD contains a single asterisk (*).

Whenever control is transferred to Debug Tool, %LOAD is set to the name of
the currently executing phase (or to an asterisk in the case of the initial phase).
You can change or override the value of %LOAD by using the SET QUALIFY
command.

For phases to be recognized by Debug Tool, they must have been loaded by a
language call and not through a direct operating system load command.

%NLANGUAGE
Indicates the national language currently in use. Its possible values include:

ENGLISH
UENGLISH
JAPANESE

Chapter 9. Using Debug Tool with C Programs 143

Using Debug Tool with C Programs

%PATHCODE
Contains an integer value identifying the kind of path change taking place when
Debug Tool is entered because of a path breakpoint. Possible values are:

-1 Debug Tool is not in control as the result of a path or attention
situation.

An attention interrupt occurred.
A block has been entered.
A block is about to be exited.

Control has reached a user label.

A W N = O

Control is being transferred as a result of a function reference. The
invoked routine's parameters, if any, have been prepared.

5 Control is returning from a function reference. Any return code
contained in register 15 has not yet been stored.

6 Some logic contained by a conditional do/while, for, or while
statement is about to be executed. This can be a single or Null
statement and not a block statement.

The logic following an if(...) is about to be executed.

The logic following an else is about to be executed.

The logic following a case within a switch is about to be executed.
10 The logic following a default within a switch is about to be executed.

13 The logic following the end of a switch, do, while, if(...), or foris
about to be executed.

17 A goto, break, continue, or return is about to be executed.

Values in the range 3—17 can only be assigned to %PATHCODE if your
program was compiled with an option supporting path hooks.

%PLANGUAGE
Indicates the programming language currently in use.

%PROGRAM
The name of the primary entry point of the current program.

You can change or override the value of %PROGRAM by using the QUALIFY
command.

%PROGRAM is equivalent to %CU.

%RC
Contains a return code whenever a Debug Tool command ends.

%RC initially has a value of zero unless the log file cannot be opened, in which
case it has a value of -1.

The %RC return code is a Debug Tool variable. It is not related to the return
code that can be found in Register 15.

%RUNMODE
Contains a string identifying the presentation mode of Debug Tool. Possible
values are:

SCREEN

144 Debug Tool/VSE V1R1 User's Guide and Reference

Using Debug Tool with C Programs

BATCH

%STATEMENT
Contains the current statement number. This value can include a period since
the current statement can be one other than the first statement in a source line.

If the program is at the entry or exit of a block, %STATEMENT contains
ENTRY or EXIT, respectively.

If the statement number cannot be determined (for example, if a run-time
statement number does not exist or the address where the program is
interrupted is not in the program), %STATEMENT contains an asterisk (*).

%STATEMENT is equivalent to %LINE.

%SUBSYSTEM
Contains the name of the underlying subsystem, if any, where the program is
executing. Possible values are:

CICS
NONE

%SYSTEM
Contains the name of the operating system supporting the program. The only
possible value is: VSE.

C Expressions

Debug Tool allows evaluation of expressions in your test program. All expressions
available in C are also available within Debug Tool except for the conditional
expression (? :). That is, all operators such as +, -, %, and += are fully
supported with the exception of the conditional operator.

C language expressions are arranged in the following groups based on the
operators they contain and how you use them:

e Primary expression

e Unary expression

e Binary expression

e Conditional expression
e Assignment expression
e Comma expression

e lvalue

e Constant

An Tvalue is an expression representing a data object that can be examined and
altered. For a more detailed description of expressions and operators, see IBM C
for VSE/ESA User's Guide or IBM C for VSE/ESA Language Reference.

The semantics for C operators are the same as in a compiled C program.
Operands can be a mixture of constants (integer, floating-point, character,
string, and enumeration), C variables, Debug Tool variables, or session variables
declared during a Debug Tool session. Language constants are specified as
described in the IBM C for VSE/ESA Language Reference.

The Debug Tool command DESCRIBE ATTRIBUTES can be used to display the
resultant type of an expression, without actually evaluating the expression.

Chapter 9. Using Debug Tool with C Programs 145

Using Debug Tool with C Programs

The C language does not specify the order of evaluation for function call
arguments. Consequently, it is possible for an expression to have a different
execution sequence in compiled code than within Debug Tool. For example, if you
enter the following in an interactive session:

int x;

int y;

x=y=1;
printf ("%d %d %d%" x, y, x=y=0);

the results can differ from results produced by the same statements located in a C
program segment. Any expression containing behavior undefined by ANSI
standards can produce different results when evaluated by Debug Tool than when
evaluated by the compiler.

For more information about expressions and operators, refer to IBM C for VSE/ESA
Language Reference.

The following examples show you various ways Debug Tool supports the use of
expressions in your programs:
e Debug Tool assigns 12 to a (the result of the printf()) function call, as in:
a = (1,2/3,a++,b++,printf("hello world\n"));
e Debug Tool supports structure and array referencing and pointer dereferencing,
as in:

Teague[num] .team[1] .player[1]++;
Teague[num] .team[1] .total += 1;
++(*pleague);

e Simple and compound assignment is supported, as in:

v.x = 3;
a=b=c=4d-=0;
*(pointer++) -= 1;

e C language constants in expressions can be used, as in:

pointer_to_c = "abcdef" + 0x2;
*pointer_to_Tong = 3521L + Ox69all;
float_val = 3e-11 + 6.6E-10;
char_val = '7';

e The comma expression can be used, as in:

intensity <<= 1, shade * increment, rotate(direction);
alpha = (y>>3, omega % 4);

e Debug Tool performs all implicit and explicit C conversions when necessary.
Conversion to long double is performed in:

long_double_val = unsigned_short_val;
Tong_double_val = (Tong double) 3;

Function Calls
You can perform calls to user and C library functions within Debug Tool.

You can make calls to C library functions at any time. In addition, you can use the

C library variables stdin, stdout, stderr, _ amrc, and errno in expressions
including function calls.

146 Debug Tool/VSE V1R1 User's Guide and Reference

Using Debug Tool with C Programs

The library function ctd1i cannot be called unless it is referenced in a compilation
unit in the program, either main or a function linked to main.

Calls to user functions can be made, provided Debug Tool is able to locate an
appropriate definition for the function within the symbol information in the user
program. These definitions are created when the program is compiled with
TEST(SYM). For details, see [fCompiling a C Program with the Compile-Time]
[TEST Option” on page 12|

Debug Tool performs parameter conversions and parameter-mismatch checking
where possible. Parameter checking is performed if:

e The function is a library function
¢ A prototype for the function exists in the current compilation unit

e Debug Tool is able to locate a prototype for the function in another compilation
unit, or the function itself was compiled with TEST(SYM).

You can turn off this checking by specifying SET WARNING OFF.

Calls can be made to any user functions that have linkage supported by the C
compiler.

Debug Tool attempts linkage checking, and does not perform the function call if it
determines there is a linkage mismatch. A linkage mismatch occurs when the
target program has one linkage but the source program believes it has a different
linkage.

It is important to note the following regarding function calls:

e The evaluation order of function arguments can vary between the C program
and Debug Tool. No discernible difference exists if the evaluation of arguments
does not have side effects.

e Debug Tool knows about the function return value, and all the necessary
conversions are performed when the return value is used in an expression.

For more information about #pragma linkage and the extern keyword, refer to IBM
C for VSE/ESA Language Reference.

Using Debug Tool Functions with C

Debug Tool provides built-in functions for use during a debugging session. These
functions allow greater access to your programming environment and greater
control over your debugging session. Using these functions, you can reference
storage, translate the values of operands to hexadecimal characters, or access a
variable or parameter during a specific instance of a recursive procedure.

Using %HEX

When used with the LIST command, %HEX allows you to display the value of an
operand as a hexadecimal character string. For example, if you want to examine
the internal representation of the packed decimal variable zvarl whose external
representation is 235, you can enter:

LIST %HEX(zvarl);

The hexadecimal value of 235C is displayed in the Log window.

Chapter 9. Using Debug Tool with C Programs 147

Using Debug Tool with C Programs

Using %STORAGE

%STORAGE allows you to reference storage by address and length. By using
%STORAGE as the reference when setting a CHANGE breakpoint, you can watch
specific areas of storage for changes. For example, to monitor eight bytes of
storage at the hex address 22222 for changes, enter:

AT CHANGE %STORAGE (0x00022222, 8)
LIST "Storage has changed at Hex address 22222"

Using %RECURSION

%RECURSION allows you to access an automatic variable or a parameter in a
specific instance of a recursive function. When you use %RECURSION, remember
that:

 If the expression has a value of 1, the oldest generation is referenced. The
higher the value of the expression, the more recent the generation of the
variable Debug Tool references.

* %RECURSION can be used like a Debug Tool variable.

Using %INSTANCES

%INSTANCES returns the maximum value of %RECURSION (that is, the most
recent recursion number) for a given block. %INSTANCES can be used like a
Debug Tool variable.

%INSTANCES and %RECURSION can be used together to determine the number
of times a function is recursively called. They can also give you access to an
automatic variable or parameter in a specific instance of a recursive procedure.
Assume, for example, your program contains these statements:

int RecFn(unsigned int i) {
if (i == 0) {
__ctest("");

At this point, the _ ctest() call gives control to Debug Tool, and you are prompted
for commands. If you enter:

LIST %INSTANCES(i);
Your Log window displays the number of times RecFn() was interactively called.

If you enter:
%RECURSION(i, 1);

you receive the value of 'i' at the first call of RecFn().

If necessary, you can use qualification to specify the parameter. For example, if
the current point of execution is in %block2, and %block3 is a recursive function
containing the variable x, you can write an expression using x by qualifying the
variable, as follows:

%RECURSION(main:>%block3:>x, %INSTANCES(main:>%block3:>x, y+3)) = 10;

For the proper syntax of the functions described above, see [‘Debug Tool's Built-in|
[Functions” on page 134

The following are examples of command sequences issued to Debug Tool using C
semantics and library functions:

148 Debug Tool/VSE V1R1 User's Guide and Reference

Using Debug Tool with C Programs

e The following example gets a line of input from stdin using the C library routine
gets.
char 1ine[100];

char *result;
result = gets(line);

* The following example removes a file and checks for an error, issuing a
message if an error occurs.
int result;
result = remove("mayfile.dat");
if (result != 0)
perror("could not delete file");

e Debug Tool performs the necessary conversions when a call to a library
function is made. The cast operator can be used. In the following example,
the integer 2 is converted to a double, which is the required argument type for
sqrt.

double sqrtval;
sqrtval = sqrt(2);

¢ Nested function calls can be performed, as in:
printf("absolute value is %d\n", abs(-55));

e Qualification can be used in expressions. In the following example the function
check (from the current compilation unit) is called with the variable table (from

the function main) as a parameter. The return value is assigned to the variable
rc.

rc = %CU:>check(main:>table);

See the section on [‘Using Qualification for C” on page 156|for details.

e C library variables such as errno and stdout can be used, as in:

fprintf(stdout, "value of errno is %d\n", errno);

Debug Tool Evaluation of C Expressions

Debug Tool interprets most input as a collection of one or more expressions. You
can use expressions to alter a program variable or to extend the program by adding
expressions at points that are governed by AT breakpoints.

Debug Tool evaluates C expressions following the rules presented in the IBM C for
VSE/ESA Language Reference publication. The result of an expression is equal to
the result that would have been produced if the same expression had been part of

your compiled program.

Implicit string concatenation is supported. For example, "abc" "def" is accepted
for "abcdef" and treated identically. Concatenation of wide string literals to string
literals is not accepted. For example, L"abc"L"def" is valid and equivalent to
L"abcdef", but "abc" L"def" is not valid.

Expressions you use during your session are evaluated with the same sensitivity to
enablement as are compiled expressions. Conditions that are enabled are the
same ones that exist for program statements.

During a Debug Tool session, if the current setting for WARNING is ON, the
occurrence in your C program of any one of the conditions listed below causes the

Chapter 9. Using Debug Tool with C Programs 149

Using Debug Tool with C Programs

display of a diagnostic message. The messages themselves are displayed on your
terminal, and are explained in [Appendix F, “Debug Tool Messages” on page 355|
The list below is for reference only.

e Division by zero

e Remainder (%) operator for a zero value in the second operand
e Array subscript out of bounds for a defined array

 Bit shifting by a number that is either negative or greater than 32

* Incorrect number of parameters, or parameter type mismatches for a function
call

« Differing linkage calling conventions for a function call

* Assignment of an integer value to a variable of enumeration data type where
the integer value does not correspond to an integer value of one of the
enumeration constants of the enumeration data type

* Assignment to an 1value that has the const attribute

e Attempt to take the address of an object with register storage class
* A signed integer constant not in the range -2**31<—>2**31

e A real constant not having an exponent of 3 or fewer digits

» A float constant not larger than
5.39796053469340278908664699142502496E-79 or smaller than
7.2370055773322622139731865630429929E+75

¢ A hex escape sequence that does not contain at least one hexadecimal digit
e An octal escape sequence with an integer value of 256 or greater

* An unsigned integer constant greater than the maximum value of 4294967295.

Using SET INTERCEPT with C Programs

150

Several considerations must be kept in mind when using the INTERCEPT
command to intercept files while you are debugging a C application.

| For CICS Only

SET INTERCEPT is not supported for CICS.

| End of For CICS Only

You can use the following names with the SET INTERCEPT command during a
debugging session:

e stdout, stderr and stdin (lowercase only)

e any valid fopen() file specifier.
The behavior of I/O interception across system() call boundaries is global. This
implies that the setting of INTERCEPT ON for xx in Program A is also in effect for
Program B (when Program A system() calls to Program B). Correspondingly,

setting INTERCEPT OFF for xx in Program B turns off interception in Program A
when Program B returns to A. This is also true if a file is intercepted in Program B

Debug Tool/VSE V1R1 User's Guide and Reference

Using Debug Tool with C Programs

and returns to Program A. This model applies to disk files, memory files, and
standard streams.

When a stream is intercepted, it inherits the text/binary attribute specified on the
fopen statement. The output to and input from the Debug Tool log file behaves in
the following manner:

Intercepted input behaves as though the file is opened for record 1/0.
Intercepted input is truncated if the data is longer than the record size and the
truncated data is not available to subsequent reads.

Intercepted output is not truncated. Data is split across multiple lines.

Some situations causing an error with the real file might not cause an error
when the file is intercepted (for example, truncation errors do not occur). Files
expecting specific error conditions do not make good candidates for
interception.

Only sequential 1/0 can be performed on an intercepted stream, but file
positioning functions are tolerated and the real file position is not changed.
fseek, rewind, ftell, fgetpos, and fsetpos do not cause an error, but have no
effect.

The logical record length of an intercepted stream reflects the logical record
length of the real file.

When an unintercepted memory file is opened, the record format is always
fixed and the open mode is always binary. These attributes are reflected in the
intercepted stream.

Other characteristics of intercepted files are:

When an fclose() occurs or INTERCEPT is set OFF for a file that was
intercepted, the data is flushed to the session log file before the file is closed or
the SET INTERCEPT OFF command is processed.

When an fopen() occurs for an intercepted file, an open occurs on the real file
before the interception takes effect. If the fopen() fails, no interception occurs
for that file and any assumptions about the real file, such as the filename
(DLBL) and file defaults, take effect.

The behavior of the ASIS suboption on the fopen() statement is not supported
for intercepted files.

When the c1rmemf() function is invoked and memory files have been
intercepted, the buffers are flushed to the session log file before the files are
removed.

If the fldata() function is invoked for an intercepted file, the characteristics of
the real file are returned.

If stderr is intercepted, the interception overrides the LE/VSE message file (the
default destination for stderr). A subsequent SET INTERCEPT OFF command
returns stderr to its MSGFILE destination.

If a file is opened with a filename (DLBL), interception occurs only if the
filename is specified on the INTERCEPT command. Intercepting the underlying
file name does not cause interception of the stream.

If library functions are invoked when Debug Tool is waiting for input for an
intercepted file (for example, if you interactively enter fwrite(..) when Debug
Tool is waiting for input), subsequent behavior is undefined.

Chapter 9. Using Debug Tool with C Programs 151

Using Debug Tool with C Programs

152

¢ 1/O intercepts remain in effect for the entire debug session, unless you

terminate them by selecting SET INTERCEPT OFF.

Command line redirection of the standard streams is supported under Debug Tool,
as follows:

1.

. 1>&2:

If stderr is the target of the interception command, stdout is also
intercepted. If stdout is the target of the interception command, stderr is
not intercepted. When INTERCEPT is set OFF for stdout, the stream is
redirected to stderr.

. 2>&1:

If stdout is the target of the interception command, stderr is also
intercepted. If stderr is the target of the interception command, stdout is
not intercepted. When INTERCEPT is set OFF for stderr, the stream is
redirected to stdout again.

. 1>file.name:

stdout is redirected to file.name. For interception of stdout to occur,
stdout or file.name can be specified on the interception request. This also
applies to 1>>file.name

. 2>file.name:

stderr is redirected to file.name. For interception of stderr to occur,
stderr or file.name can be specified on the interception request. This also
applies to 2>>file.name

. 2>&1 1>file.name:

stderr is redirected to stdout, and both are redirected to file.name. If
file.name is specified on the interception command, both stderr and
stdout are intercepted. If you specify stderr or stdout on the interception
command, the behavior follows rule 1b above.

. 1>&2 2>file.name:

stdout is redirected to stderr, and both are redirected to file.name. If you
specify file.name on the interception command, both stderr and stdout
are intercepted. If you specify stdout or stderr on the interception
command, the behavior follows rule 1a above.

4. The same standard stream cannot be redirected twice on the command line.

Interception is undefined if this is violated.

a. 2>&1 2>file.name:

Behavior of stderr is undefined.

b. 1>&2 1>file.name:

Behavior of stdout is undefined.

Debug Tool/VSE V1R1 User's Guide and Reference

Using Debug Tool with C Programs

Objects and Scopes

An object is visible in a block or source file if its data type and declared name are
known within the block or source file. The region where an object is visible is
referred to as its scope. In Debug Tool, an object can be a variable or function and
is also used to refer to line numbers.

In ANSI C, the four kinds of scope are:

Block

File

Function

Function prototype

An object has block scope if its declaration is located inside a block. An object with
block scope is visible from the point where it is declared to the closing brace (}) that
terminates the block.

An object has file scope if its definition appears outside of any block. Such an
object is visible from the point where it is declared to the end of the source file. In
Debug Tool, if you are qualified to the compilation unit with the file static variables,
file static and global variables are always visible.

The only type of object with function scope is a label name.

An object has function prototype scope if its declaration appears within the list of
parameters in a function prototype.

You cannot reference objects that are visible at function prototype scope, but you
can reference ones that are visible at file or block scope if:

e For variables and functions, the source file was compiled with TEST(SYM) and
the object was referenced somewhere within the source.

¢ For variables declared in a block that is nested in another block, the source file
was compiled with TEST(SYM, BLOCK).

e For line numbers, the source file was compiled with TEST(LINE) GONUMBER.

e For labels, the source file was compiled with TEST(SYM, PATH). In some
cases (for example, when using GOTO), labels can be referenced if the source
file was compiled with TEST(SYM, NOPATH).

Debug Tool follows the same scoping rules as ANSI, except that it handles objects
at file scope differently. An object at file scope can be referenced from within
Debug Tool at any point in the source file, not just from the point in the source file
where it is declared. Debug Tool temporary variables always have a higher scope
than program variables, and consequently have higher precedence than a program
variable with the same name. The program variable can always be accessed
through qualification.

In addition, Debug Tool supports the referencing of variables in multiple phases.
Multiple phases are managed through the C library functions fetch(), and
release(). For example, let's assume the program shown in

is compiled with TEST(SYM). When Debug Tool gains control, the file
scope variables Tength and table are available for change, as in:

length = 60;

Chapter 9. Using Debug Tool with C Programs 153

Using Debug Tool with C Programs

The block scope variables i, j, and temp are not visible in this scope and cannot
be directly referenced from within Debug Tool at this time. You can list the line

numbers in the current scope by entering:
LIST LINE NUMBERS;

Now let's assume the program shown in Figure 30 is compiled with TEST(SYM,
NOBLOCK). Since the program is explicitly-compiled using NOBLOCK, Debug
Tool will never know about the variables j and temp because they are defined in a
block that is nested in another block. Debug Tool does know about the variable i

since it is not in a scope that is nested.

#pragma runopts(EXECOPS)
#include <stdlib.h>

main()
{
>>> Debug Tool is given <<<
>>> control here. <<<
init();
sort();
}

short length = 40;
static Tong *table;

init()
{
table = malloc(sizeof(long)*Tength);

}...

sort ()
{
int i;
for (i = 0; i < length-1; i++) {
int j;
for (j = i+l; j < length; j++) {
static int temp;
temp = table[i];
table[i] = table[j];
table[j] = temp;
}
1
}

/* Block sort =/
/* Block %BLOCK2 =/

/* Block %BLOCK3 */

Figure 30. Program Showing Support for Referencing Variables in Multiple Phases

Storage Classes

Debug Tool supports the change and reference of all objects declared with the

following storage classes:

auto
register
static
extern

154 Debug Tool/VSE V1R1 User's Guide and Reference

Using Debug Tool with C Programs

Temporary variables declared during the Debug Tool session are also available for
reference and change.

An object with auto storage class is available for reference or change in Debug
Tool, provided the block where it is defined is active. Once a block finishes
executing, the auto variables within this block are no longer available for change,
but can still be examined using DESCRIBE ATTRIBUTES.

An object with register storage class might be available for reference or change in
Debug Tool, provided the variable has not been optimized to a register.

An object with static storage class is always available for change or reference in
Debug Tool. If it is not located in the currently qualified compile unit, you must
specifically qualify it.

An object with extern storage class is always available for change or reference in
Debug Tool. It might also be possible to reference such a variable in a program
even if it is not defined or referenced from within this source file. This is possible
provided Debug Tool can locate another compile unit (compiled with TEST(SYM))
with the appropriate definition.

Blocks and Block Identifiers for C

It is often necessary to set breakpoints on entry into or exit from a given block or to
reference variables that are not immediately visible from the current block. Debug
Tool can do this, provided that all blocks are named. It uses the following naming
convention:

¢ The outermost block of a function has the same name as the function.

» Blocks enclosed in this outermost block are sequentially named: %BLOCK2,
%BLOCK3, %BLOCK4, and so on in order of their appearance in the function.

When these block names are used in the Debug Tool commands, you might need
to distinguish between nested blocks in different functions within the same source
file. This can be done by naming the blocks in one of two ways:

¢ Function_name:>%BL0CKzzz (short form)
¢ Function_name:>%BLOCKxxx:>%BLOCKyyy
. > %BLOCKzzz (long form).

%BLOCKzzz is contained in %BLOCKyyy, which is contained in %BLOCKxxx. The short
form is always allowed; it is never necessary to specify the long form.

The currently active block name can be retrieved from the Debug Tool variable
%BLOCK. You can display the names of blocks by entering:

DESCRIBE CU;

In the program shown in [Figure 30 on page 154} the function sort has three
blocks:

sort
%BLOCK2
%BLOCK3.

Chapter 9. Using Debug Tool with C Programs 155

Using Debug Tool with C Programs

The following example sets a breakpoint on entry to the second block of sort:
at entry sort:>%BLOCK2;

The following example sets a breakpoint on exit of the first block of main and lists
the entries of the sorted table.
at exit main {
for (i = 0; i < length; i++)
printf("table entry %d is %d\n", i, table[i]);
}

The following example lists the variable temp in the third block of sort. This is
possible since temp has the static storage class.

LIST sort:>%BLOCK3:temp;

Displaying Environmental Information

You can also use the DESCRIBE command to display a list of attributes applicable
to the current run-time environment. The type of information displayed varies from
language to language.

Issuing DESCRIBE ENVIRONMENT displays a list of open files and a list of
conditions being monitored by the run-time environment. For example, if you enter
DESCRIBE ENVIRONMENT while debugging a C program, you might get the
following output:

Currently open files
DD:SYSLST
stdout
The following conditions are enabled:
SIGFPE
SIGILL
SIGSEGV
SIGTERM
SIGINT
SIGABRT
SIGUSR1
SIGUSR2
SIGABND

Using Qualification for C
Qualification is a method of:

e Specifying an object through the use of qualifiers
e Changing the point of view.

Qualification is often necessary due to name conflicts, or when a program consists
of multiple phases, compile units, and/or functions.

When program execution is suspended and Debug Tool receives control, the
default, or implicit qualification is the active block at the point of program
suspension. All objects visible to the C program in this block are also visible to
Debug Tool. Such objects can be specified in commands without the use of
qualifiers. All others must be specified using explicit qualification|_Figure 31 on|
shows a block of code from a C program. When Debug Tool receives
control, variables i, j, temp, table, and Tength can be specified without qualifiers

156 Debug Tool/VSE V1R1 User's Guide and Reference

Using Debug Tool with C Programs

in a command. If variable sn is referenced, Debug Tool uses the variable that is a
float.

PHASE NAME: MAINMOD
SOURCE FILE NAME: SORTMAIN C A

short length = 40;
main ()

{
long *table;

void (*pf)();
table = malloc(sizeof(long)*length);

pf = fetch("SORTMOD");
(*pf) (table);

release(pf);
}

PHASE NAME: SORTMOD
SOURCE FILE NAME: SORTSUB C A

short length = 40;
short sn = 3;

void sort(Tong table[])
{

short i;
for (i = 0; i < length-1; i++) {
short j;

for (j = i+l; j < length; j++) {
float sn = 3.0;
short temp;
temp = table[i];

>>> Debug Tool is given <<<
>>> control here. <<<

table[i] = table[j];
table[j] = temp;
}

}
}

Figure 31. Qualification for C

Using Qualifiers
You can precisely specify an object, provided you know the following:
e Phase name

e Source file (compilation unit) name
e Block name.

These are known as qualifiers and some, or all, might be required when referencing
an object in a command. Qualifiers are separated by a combination of greater than
signs (>) and colons and precede the object they qualify. For example, the
following is a fully qualified object:

PHASE_NAME: :>CU_NAME :>BLOCK_NAME :>object

Chapter 9. Using Debug Tool with C Programs 157

Using Debug Tool with C Programs

PHASE_NAME is the name of the phase. It is required only when the application
consists of multiple phases and when you want to change the qualification to other
than the current phase. PHASE_NAME is enclosed in double quotation marks. If it
is not, it must be a valid identifier in the C programming language. PHASE_NAME
can also be the Debug Tool variable %LOAD.

CU_NAME is the name of the compilation unit or source file. The CU_NAME must
be the fully qualified source file name. It is required only when you want to change
the qualification to other than the currently qualified compilation unit. It can be the
Debug Tool variable %CU. If there appears to be an ambiguity between the
compilation unit name, and (for example), a block name, you must enclose the
compilation unit name in double quotation marks (").

BLOCK_NAME is the name of the block. This has the same syntax as described in
the section on [Blocks and Block Identifiers for C” on page 155. BLOCK_NAME
can be the Debug Tool variable %BLOCK.

The following examples are based on [Figure 31 on page 157}

* Change the file scope variable Tength defined in the compilation unit
SORTSUB:

"SORTMOD": :>"SORTSUB" :>1ength = 20;

e Assume Debug Tool gained control from main(). The following changes the
variable Tength:

%LOAD: :>"SORTMAIN" :>Tength = 20;

Because length is in the current phase and compilation unit, it can also be
changed by:

length = 20;

» Assume Debug Tool gained control as shown in|Figure 31 on page 157 You
can break whenever the variable temp in phase SORTMOD changes in any of
the following ways:

AT CHANGE temp;

AT CHANGE %BLOCK3:>temp;

AT CHANGE sort:>%BLOCK3:>temp;

AT CHANGE %BLOCK:>temp;

AT CHANGE %CU:>sort:>%BLOCK3:>temp;

AT CHANGE "SORTSUB":>sort:>%BLOCK3:>temp;

AT CHANGE "SORTMOD"::>"SORTSUB":>sort:>%BLOCK3:>temp;

Changing the Point of View

To change the point of view from the command line or a command file, use
qualifiers in conjunction with the SET QUALIFY command. This can be necessary
to get to data that is inaccessible from the current point of view, or can simplify
debugging when a number of objects are being referenced.

It is possible to change the point of view to another phase, to another compilation
unit, to a nested block, or to a block that is not nested. The SET keyword is
optional.

The following examples of changing the point of view are based on

¢ Qualify to the second nested block in the function sort() while in sort.

158 Debug Tool/VSE V1R1 User's Guide and Reference

Using Debug Tool with C Programs

SET QUALIFY BLOCK %BLOCKZ;

You can do this in a number of other ways, including:
QUALIFY BLOCK sort:>%BLOCK2;
Once the point of view changes, Debug Tool has access to objects accessible

from this point of view. You can specify these objects in commands without
qualifiers, as in:

=3

temp = 4;

Qualify to the function main in the phase MAINPHS in the compilation unit
SORTMAIN and list the entries of table.

QUALIFY BLOCK "MAINPHS"::>"SORTMAIN":>main();
LIST table[i];

Chapter 9. Using Debug Tool with C Programs 159

Using Debug Tool with COBOL Programs

Chapter 10. Using Debug Tool with COBOL Programs

This chapter provides information on the way Debug Tool interacts with COBOL.

It covers such areas as the debugging environment provided by Debug Tool, the
Debug Tool subset of COBOL commands and reserved words, Debug Tool
evaluation of COBOL expressions, methods of program qualification, and changing
the point of view among several phases.

This chapter also discusses variables: accessing program variables, declaring
temporary variables, displaying values of COBOL variables, assigning values to
COBOL variables, using Debug Tool variables in COBOL, and using DBCS
characters in COBOL when testing with the Debug Tool.

The Debugging Environment Provided for COBOL Programs

While Debug Tool allows you to use many commands that are either very similar or
equivalent to COBOL statements, Debug Tool does not necessarily interpret these
commands as required by the compiler options you chose when compiling your
program. This is because in the Debug Tool environment, the following settings
are in effect:

DYNAM

NOCMPR2
NODBCS
NOWORD
NUMPROC(NOPFD)
QUOTE
TRUNC(BIN)

ZWB

For more information on these compile-time options, see IBM COBOL for VSE/ESA
Language Reference.

Debug Tool Commands

160

To make testing COBOL programs easier, Debug Tool allows you to write
debugging commands in a manner resembling COBOL statements. It does this by
providing an interpretive subset of COBOL language statements. This interpretive
subset is a list of commands recognized by Debug Tool that either closely resemble
or duplicate the syntax and action of the appropriate COBOL statements. This not
only allows you to work with familiar commands, but also simplifies the insertion
into your source code of program patches developed while in your Debug Tool
session.

The interpretive subset of COBOL statements recognized by Debug Tool is shown
in[Table 20 on page 349l This subset of statements is valid only when the current
programming language is COBOL.

For specific usage notes concerning each command, see the appropriate section of
[Part 3, “Debug Tool Reference” on page 193}

© Copyright IBM Corp. 1995, 1996

Using Debug Tool with COBOL Programs

For explanations of COBOL statement usage and keyword meaning, see /IBM
COBOL for VSE/ESA Language Reference.

Restrictions on COBOL-like Commands
Some restrictions apply to the use of the COBOL commands COMPUTE, MOVE,
and SET; the conditional execution command, IF; the multiway switch, EVALUATE;
the iterative looping command, PERFORM; and the subroutine call, CALL. The
restrictions listed below for each command are in addition to restrictions found in
IBM COBOL for VSE/ESA Language Reference.

COMPUTE
When using COMPUTE to assign the value of an arithmetic expression to a
variable, keep the following restrictions in mind:

¢ COMPUTE can assign a value to only one identifier.

 If Debug Tool was invoked due to a computational condition or an attention
interrupt, using an assignment to set a variable might not give the results you
expect. This is due to the uncertainty of variable values within statements as
opposed to their values at statement boundaries.

e The following phrases are not supported: ROUNDED, SIZE ERROR, and
END-COMPUTE.

e The keyword EQUAL is not supported (= must be used).

« If the arithmetic expression in the COMPUTE operation consists of only one
numeric operand, the command is treated as a MOVE command. Therefore,
the same restrictions that apply to the MOVE command also apply to the
COMPUTE command.

For more information, see|[“COMPUTE Command (COBOL)” on page 245 and /BM
COBOL for VSE/ESA Language Reference.

MOVE

When using MOVE to assign the value of one program, session, or Debug Tool
variable, or literal to another program, session, or Debug Tool variable, keep in
mind the following restrictions:

e MOVE can assign a value to only one identifier.

* |f Debug Tool was invoked due to a computational condition or an attention
interrupt, using an assignment to set a variable might not give the results you
expect. This is due to the uncertainty of variable values within statements, as
opposed to their values at statement boundaries.

e The CORRESPONDING phrase is not supported.

[Table 22 on page 351|shows the permissible moves for the MOVE command.

For more information, see["MOVE Command (COBOL)” on page 286|and /BM
COBOL for VSE/ESA Language Reference.

Chapter 10. Using Debug Tool with COBOL Programs 161

Using Debug Tool with COBOL Programs

162

SET

While using the SET command, keep the following restrictions in mind:

e Only a single receiver is allowed.

» Only the sender-receiver combinations listed in [Table 23 on page 352|are
supported.

 If Debug Tool was invoked due to a computational condition or an attention
interrupt, using an assignment to set a variable might not give the results you
expect. This is due to the uncertainty of variable values within statements as
opposed to their values at statement boundaries.

e Only Formats 1, 5, and 7 of the COBOL SET command are supported.

Additionally, Debug Tool provides a hexadecimal constant that can be used with
the SET command, where the hexadecimal value is denoted by an "H" and
delimited by quotation marks or apostrophes. For more information on this
constant, see [Using Constants in Expressions” on page 173.

For more information, see |[“SET Command (COBOL)” on page 326|and /BM
COBOL for VSE/ESA Language Reference.

IF

When using the IF command, keep in mind the following restrictions:

¢ Only simple relation conditions are supported.
e The NEXT SENTENCE phrase is not supported.
» Only the comparisons shown in[Table 21 on page 349 are supported.

For more information, see[‘IF_Command (COBOL)” on page 269 and /IBM COBOL
for VSE/ESA Language Reference.

EVALUATE

When using the EVALUATE command, keep in mind the following restrictions:

¢ Only a single subject is supported.

e Consecutive WHENSs without associated commands are not supported.

« THROUGH/THRU ranges must be specified as literal constants.

e Only simple relation conditions are supported.

e Debug Tool implements the EVALUATE command as a series of IF commands.
As a result, only the comparisons shown in [Table 21 on page 349 are
supported.

For more information, see F[EVALUATE Command (COBOL)” on page 260 and /BM
COBOL for VSE/ESA Language Reference.

PERFORM

When using the PERFORM command, keep in mind the following restrictions:

e Only inline PERFORM commands are supported (but the PERFORM command
can be a Debug Tool procedure invocation).

¢ Only simple relation conditions are supported.
e The AFTER phrase is not supported.

* Index names and floating-point variables cannot be used as the varying
identifiers.

Debug Tool/VSE V1R1 User's Guide and Reference

Using Debug Tool with COBOL Programs

e Index names are not supported in the BY-phase.

For more information, see[‘PERFORM Command (COBOL)” on page 291|and /IBM
COBOL for VSE/ESA Language Reference.

CALL

When using the CALL command, keep in mind the following restrictions:

e The ON OVERFLOW and ON EXCEPTION phrases are not supported.
Consequently, END-CALL is not supported.

¢ Only CALL commands to separately compiled programs are supported. You
cannot CALL nested programs, although they can be invoked by GOTO or
STEP to a compiled-in CALL command.

e All CALLs are dynamic. The called program is loaded when it is called.

For more information, see [*CALL Command” on page 234|and /BM COBOL for
VSE/ESA Language Reference.

COBOL Command Format

When you are entering commands directly at your terminal, the format is free-form,
because you can begin your commands in column 1 and continue long commands
using the appropriate method. You can continue on the next line during your
Debug Tool session by using an SBCS hyphen (-) as a continuation character.

However, when you use a file as the source of command input, the format for your
commands is similar to the source format for the COBOL compiler. The first six
positions are ignored, and an SBCS hyphen in column 7 indicates continuation from
the previous line. You must start the command text in column 8 or later, and end it
in column 72.

The continuation line (with a hyphen in column 7) optionally has one or more
blanks following the hyphen, followed by the continuing characters. In the case of
the continuation of a literal string, an additional quote is required. When the token
being continued is not a literal string, blanks following the last nonblank character
on the previous line are ignored, as are blanks following the hyphen.

When Debug Tool copies commands to the log file, they are formatted according to
the rules above so that you can use the log file during subsequent Debug Tool
sessions.

Continuation is not allowed within a DBCS name or literal string. This restriction
applies to both interactive and command file input.

Using COBOL Variables with Debug Tool
Debug Tool can process all variable types valid in the COBOL language.
In addition to being allowed to assign values to variables and display the values of

variables during your session, you can declare temporary variables to suit your
testing needs. The following sections describe these tasks.

Chapter 10. Using Debug Tool with COBOL Programs 163

Using Debug Tool with COBOL Programs

Accessing Program Variables

Debug Tool obtains information about a program variable by name, using
information that is contained in the symbol table built by the compiler. You make
the symbol table available to Debug Tool by compiling with the compile-time
TEST(SYM) option. (See|‘Compiling a COBOL Program with the Compile-Time|
[TEST Option” on page 16| for details about the compile-time TEST option.)

Assigning Values to COBOL Variables

Debug Tool provides three COBOL-like commands to use when assigning values to
variables—SET, MOVE, and COMPUTE.

Note: All examples concerning SET, MOVE, and COMPUTE refer to the
declarations in the COBOL program segment shown in Figure 32. The
examples concerning LIST, found in [‘Displaying Values of COBOL|
[Variables” on page 166} also refer to this program segment.

01 GRP.
02 ITM-1 OCCURS 3 TIMES INDEXED BY INXI1.
03 ITM-2 PIC 9(3) OCCURS 3 TIMES INDEXED BY INX2.

01 B.
02 A PIC 9(10).
01 D.
02 C PIC 9(10).
01 F.
02. E PIC 9(10) OCCURS 5 TIMES.
77 AA PIC X(5) VALUE 'ABCDE'.
77 BB PIC X(5).
77 XX PIC 9(9) COMP.
77 ONE PIC 99 VALUE 1.
77 TWO PIC 99 VALUE 2.
77 PTR POINTER

Figure 32. Sample COBOL Variable Declarations

While reading the examples of variable manipulation, refer to these declarations.

SET
SET allows you to assign values to indexes associated with index names. inx1,
defined in Figure 32 as the index to itm-1, can be given the following value:

SET inx1 TO 3;

This assigns inx1 a value of three.

You can also set index values as equal to each other, as in the following example:
SET inx2 TO inx1;

This assigns the value of inx1 to inx2.

With SET, you can set pointers. The following example:
SET ptr TO NULL;

assigns the value of an invalid address (nonnumeric 0) to ptr and:
SET ptr TO ADDRESS OF one;

assigns the address of one to ptr.

164 Debug Tool/VSE V1R1 User's Guide and Reference

Using Debug Tool with COBOL Programs

You can also use H-literals to set pointers. The following example:
SET ptr TO H'200000';

assigns the hexadecimal value of X'200000' to ptr.

MOVE

MOVE allows you to assign the value of one program, session, or Debug Tool
variable or literal to another. The following example:

MOVE a OF b TO c OF d;

assigns to the program variable c, found in structure d, the value of the program
variable a, found in structure b. Note the qualification used in this example.

The following example:
MOVE 123 TO itm-2(1,1);

assigns the value of 123 to the first table element of itm-2.

You can also use reference modification to assign values to variables as shown in
the following two examples:

MOVE aa(2:3) TO bb;

and
MOVE aa TO bb(1:4);

COMPUTE
COMPUTE allows you to assign the value of an arithmetic expression to a variable.
The following example:

COMPUTE xx = (a + e(1)) / c * 2;

assigns to variable xx the result of the expression (a + e(1)) / ¢ * 2.

You can also use table elements in such assignments as shown in the following
example:

COMPUTE itm-2(1,2) = (a + 10) / e(2);

The value assigned to a variable is always assigned to the storage for that variable.
In an optimized program, a variable can be temporarily assigned to a register, and
a new value assigned to that variable does not necessarily alter the value used by
the program.

Declaring Temporary Variables

You might want or need to declare temporary variables, also known as session
variables, during your Debug Tool session. The relevant variable assignment
commands are similar to their counterparts in the COBOL language. The rules
used for forming variable names in COBOL also apply to the declaration of
temporary variables during a Debug Tool session. For more information on
COBOL variable names, see IBM COBOL for VSE/ESA Language Reference. Only
elementary variables with the attributes shown in[Table 11 on page 247/ can be
declared as session variables. They are accessible to other HLLs.

Chapter 10. Using Debug Tool with COBOL Programs 165

Using Debug Tool with COBOL Programs

The following declarations are for a string variable, a decimal variable, a pointer
variable, and a floating-point variable. To declare a string named description,
enter:

77 description PIC X(25)

To declare a variable named numbers, enter:
77 numbers PIC 9(4) COMP

To declare a pointer variable named pinkie, enter:
77 pinkie POINTER

To declare a floating-point variable named shortfp, enter:
77 shortfp COMP-1

Session variables remain in effect for the entire debug session.

Displaying Values of COBOL Variables
To display the values of variables, issue the LIST command. The LIST command
causes Debug Tool to log and display the current values (and names, if requested)
of variables. For example, if you want to display the variables aa, bb, one, and
their respective values at statement 52 of your program, issue the following
command:

AT 52 LIST TITLED (aa, bb, one); GO;

Debug Tool sets a breakpoint at statement 52 (AT), begins execution of the
program (GO), stops at statement 52, and displays the variable names (TITLED)
and their values.

Put commas between the variables when listing more than one. If you do not want
to display the variable names when issuing the LIST command, issue LIST
UNTITLED instead of LIST TITLED.

The value displayed for a variable is always the value that was saved in storage for
that variable. In an optimized program, a variable can be temporarily assigned to a
register, and the value shown for that variable might differ from the value being
used by the program.

Using DBCS Characters

Programs you run with Debug Tool can contain variables and character strings
written using the double-byte character set (DBCS). Debug Tool also allows you to
issue commands containing DBCS variables and strings. For example, you can
display the value of a DBCS variable (LIST), assign it a new value, monitor it in the
Monitor window (MONITOR), or search for it in a window (FIND).

To use DBCS with Debug Tool, enter:
SET DBCS ON;

The IBM default for DBCS is ON.

The DBCS syntax and continuation rules you must follow to use DBCS variables in
Debug Tool commands are the same as those for the COBOL language.

For COBOL you must type a DBCS literal, such as G, in front of a DBCS value in a
Monitor or Log window if you want to update the value.

166 Debug Tool/VSE V1R1 User's Guide and Reference

Using Debug Tool with COBOL Programs

See IBM COBOL for VSE/ESA Language Reference for discussions of DBCS

usage with COBOL.

Using Debug Tool Variables in COBOL

Debug Tool variables, as shown in Table 6, provide information about your
program that you can use during your session. These variables are distinguished
by a percent character (%) as the first character in their names. To display the
values of any of them during your session, issue the LIST command.

Table 6 (Page 1 of 2). Descriptions of Debug Tool Variables

Debug Tool CcoBOL Description

Variable Attributes

%GPRnN PICTURE S9(9) Represents general-purpose registers.

USAGE COMP

%FPRn USAGE COMP-1 Represents single-precision floating-point
registers.

%LPRnN USAGE COMP-2 Represents double-precision floating-point
registers.

%EPRN n/a Represents extended-precision floating-point
registers; not valid in COBOL programs.

%ADDRESS USAGE POINTER Contains the address of the location where
your program was interrupted.

%AMODE PICTURE S9(4) Contains the current AMODE of the

USAGE COMP suspended program (either 24 or 31).

%BLOCK PICTURE X(j) Contains the name of the current block.

%CAAADDRESS USAGE POINTER Contains the address of the CAA control block
associated with the suspended program.

%CONDITION PICTURE X(j) Contains the name (or number) of the
condition identification when Debug Tool is
entered because of an HLL or LE/VSE
condition.

%COUNTRY PICTURE X(j) Contains the current country code.

%CU PICTURE X(j) Contains the name of the primary entry point
of the current compilation unit.
Equivalent to %PROGRAM.

%EPA USAGE POINTER Contains the address of the primary entry point
in the currently interrupted program.

%HARDWARE PICTURE X(j) Identifies the type of hardware where the
application is running.

%LINE PICTURE X(j) Contains the current line number. For
COBOL, %LINE does not return a relative verb
(within the line) for labels.
Equivalent to %STATEMENT.

%LOAD PICTURE X(j) Contains the name of the phase of the current
program.

%NLANGUAGE PICTURE X(j) Contains the national language currently being

used.

Chapter 10. Using Debug Tool with COBOL Programs 167

Using Debug Tool with COBOL Programs

Table 6 (Page 2 of 2). Descriptions of Debug Tool Variables

Debug Tool COBOL Description

Variable Attributes

%PATHCODE PICTURE S9(4) Contains an integer value identifying the type

USAGE COMP of change occurring when the program flow
changes.

%PLANGUAGE PICTURE X(j) Contains the current programming language.

%PROGRAM PICTURE X(j) Contains the name of the primary entry point
of the current program.

Equivalent to %CU.
%RC PICTURE S9(4) Contains a return code whenever a Debug
USAGE COMP Tool command ends.

%RUNMODE PICTURE X(j) Contains a string identifying the presentation
mode of Debug Tool.

%STATEMENT PICTURE X(j) Equivalent to %LINE.

%SUBSYSTEM PICTURE X(j) Contains the name of the underlying
subsystem, if any, where the program is
executing.

%SYSTEM PICTURE X(j) Contains the name of the operating system

supporting the program.

Debug Tool variables representing general and floating-point registers can be used
as the targets of assignment commands. Detailed descriptions of the Debug Tool

variables follow.

%GPRO, %GPR1,...,%GPR15
Variables that represent general purpose registers at the point of interruption in
a COBOL program. You can use them as targets of assignments:

MOVE name_table TO %GPR5;

When modifying register values, use care that you do not change the base

register.

Notes:

1. If you change a %GPRn register, the change is reflected when you resume
program execution.

2. Although assigning new values to variables %GPR12 and %GPR13 does
not result in an error, when any subsequent action is taken the newly set
values are reset to their previous values.

%FPRO, %FPR2, %FPR4, %FPR6
Represent short-precision floating-point registers. These variables are defined
as USAGE COMP-1. You can use them as targets of assignments:

MOVE 3.14152 TO %FPRO;

%LPRO, %LPR2, %LPR4, %LPR6
Represent long-precision floating-point registers. These variables are defined
as USAGE COMP-2. Similar to the short-precision floating-point registers
(%FPRs), you can use these registers as targets of assignments.

168 Debug Tool/VSE V1R1 User's Guide and Reference

Using Debug Tool with COBOL Programs

%EPRO, %EPR4
Represent the extended-precision floating-point registers. These variables are
not defined for COBOL programs.

%ADDRESS
Contains the address of the location where the COBOL program was
interrupted.

You can use the OFFSET table in the compiler listing to determine statement
numbers. To determine the offset, you can issue the following command:

LIST %ADDRESS - %EPA

%ADDRESS might not locate a statement in your COBOL program in all
instances. When an error occurs outside of the program, in some instances,
%ADDRESS contains the actual interrupt address. This occurs only if Debug
Tool is unable to locate the last statement that was executed before control left
the program.

%AMODE
Contains the current AMODE of the suspended program. Possible values are
24 or 31.

%BLOCK
Contains the name of the current block. To display the name of the current
block, you can use the LIST command or issue:

DESCRIBE PROGRAM;

You can change or override the value of %BLOCK using the QUALIFY
command.

%CAAADDRESS
Contains the CAA control block associated with the suspended program.

%CONDITION
Contains the name (or number) of the condition identification when Debug Tool
is entered due to an HLL or LE/VSE condition.

%COUNTRY
Contains the current country code.

%CU
Contains the name of the primary entry point of the current program.

You can change or override the value of %CU by using the QUALIFY
command.

%CU is equivalent to %PROGRAM.

%EPA
Contains the address of the primary entry point of the currently interrupted
COBOL program.

%HARDWARE
Identifies the type of hardware where the application program is running. A
possible value is 370/ESA.

%LINE
Contains the current line number. This value can include a period, since the
current line can be a statement other than the first statement on a source line.

Chapter 10. Using Debug Tool with COBOL Programs 169

Using Debug Tool with COBOL Programs

If the program is at the entry or exit of a block, %LINE contains ENTRY or
EXIT, respectively.

If the line number cannot be determined (for example, a run-time line number
does not exist or the address where the program is interrupted is not in the
program), %LINE contains an asterisk (*). Also, for COBOL, %LINE does not
return a relative verb (within the line) for labels.

%LINE is equivalent to %STATEMENT.

%LOAD

Contains the name of the current qualifying phase and is used when an
unqualified reference to a program or variable is made. If the currently
qualified phase is the one initially loaded, %LOAD contains a single asterisk (*).

Whenever control is transferred to Debug Tool, %LOAD is set to the name of
the currently executing phase (or to an asterisk in the case of the initial phase).
You can change or override the value of %LOAD by using the QUALIFY

command.

Note: For phases to be recognized by Debug Tool, they must be loaded using

LE/VSE services.

%NLANGUAGE
Indicates the national language currently being used. It is treated as a string in
COBOL. Its possible values are:

ENGLISH
UENGLISH
JAPANESE

%PATHCODE

Contains an integer value identifying the kind of path change taking place when
Debug Tool is entered because of a path breakpoint. Its possible values are:

-1

W N = O

Debug Tool is not in control as the result of a path or attention
situation.

An attention interrupt occurred.
A block has been entered.
A block is about to be exited.

Control has reached a label coded in the program (a paragraph
name or section name).

Control is being transferred as a result of a CALL or INVOKE. The
invoked routine's parameters, if any, have been prepared.

Control is returning from a CALL or INVOKE. If Register 15
contains a return code, it has already been stored.

Some logic contained by an inline PERFORM is about to be
executed. (Out-of-line PERFORM ranges must start with a
paragraph or section name, and are identified by %PATHCODE = 3.)

The logic following an IF...THEN is about to be executed.
The logic following an ELSE is about to be executed.

The logic following a WHEN within an EVALUATE is about to be
executed.

170 Debug Tool/VSE V1R1 User's Guide and Reference

10

11

12

13

14

15

16

Using Debug Tool with COBOL Programs

The logic following a WHEN OTHER within an EVALUATE is about
to be executed.

The logic following a WHEN within a SEARCH is about to be
executed.

The logic following an AT END within a SEARCH is about to be
executed.

The logic following the end of one of the following structures is
about to be executed:

¢ An IF statement (with or without an ELSE clause)
e An EVALUATE or SEARCH
e A PERFORM.

Control is about to return from a declarative procedure such as USE
AFTER ERROR. (Declarative procedures must start with section
names, and are identified by %PATHCODE = 3.)

The logic associated with one of the following phrases is about to be
run:

« [NOT] ON SIZE ERROR

[NOT] ON EXCEPTION

[NOT] ON OVERFLOW

[NOT] AT END (other than SEARCH AT END)
[NOT] AT END-OF-PAGE

« [NOT] INVALID KEY.

The logic following the end of a statement containing one of the
following phrases is about to be run:

« [NOT] ON SIZE ERROR

[NOT] ON EXCEPTION

[NOT] ON OVERFLOW

[NOT] AT END (other than SEARCH AT END)
[NOT] AT END-OF-PAGE

[NOT] INVALID KEY.

Note: Values in the range 3—-16 can be assigned to %PATHCODE only if your

program was compiled with an option supporting path hooks.

%PLANGUAGE
Indicates the programming language currently being used.

%PROGRAM

Contains the name of the primary entry point of the current program.
You can change or override the value of %PROGRAM by using the QUALIFY

command.

%PROGRAM is equivalent to %CU.

%RC

Contains a return code whenever a Debug Tool command ends.

%RC initially has a value of zero unless the log file cannot be opened, in which
case it has a value of -1.

The %RC return code is a Debug Tool variable. It is not related to the return
code that can be found in Register 15.

Chapter 10. Using Debug Tool with COBOL Programs 171

Using Debug Tool with COBOL Programs

%RUNMODE
Contains a string identifying the presentation mode of Debug Tool. Possible
values are:

SCREEN
BATCH

%STATEMENT
Contains the current statement number. This value can include a period, as
the current statement can be one other than the first statement in a source line.

If the program is at the entry or exit of a block, %STATEMENT contains
ENTRY or EXIT, respectively.

If the statement number cannot be determined (for example, if a run-time
statement number does not exist or the address where the program is
interrupted is not in the program), %STATEMENT contains an asterisk (*).

%STATEMENT is equivalent to %LINE.

%SUBSYSTEM
Contains the name of the underlying subsystem, if any, where the program is
running. Possible values are:

CICS
NONE

%SYSTEM
Contains the name of the operating system supporting the program. The only
possible value is: VSE.

Debug Tool Evaluation of COBOL Expressions

Debug Tool interprets COBOL expressions according to COBOL rules. Some
restrictions do apply. For example, the following restrictions apply when arithmetic
expressions are specified:

e Floating-point operands are not supported (COMP-1, COMP-2, external floating
point, floating-point literals).

e Only integer exponents are supported.

* |Intrinsic functions are not supported.

When arithmetic expressions are used in relation conditions, both comparand
attributes are considered. Relation conditions follow the IF rules rather than the
EVALUATE rules.

Only simple relation conditions are supported. Sign conditions, class conditions,
condition-name conditions, switch-status conditions, complex conditions, and
abbreviated conditions are not supported. When either of the comparands in a
relation condition is stated in the form of an arithmetic expression (using operators
such as plus and minus), the restriction concerning floating-point operands applies
to both comparands.

When both comparands are stated as simple references, all combinations listed in
[Table 21 on page 349| are supported.

172 Debug Tool/VSE V1R1 User's Guide and Reference

Using Debug Tool with COBOL Programs

Displaying the Results of Expression Evaluation

Use the LIST command to display the results of your expressions. For example, to
evaluate the expression and displays the result in the Log window, enter:

LIST a + (a - 10) + one;

You can also use structure elements in expressions. If e is an array, the following
two examples are valid:

LIST a + e(1) / c * two;
LIST xx / e(two + 3);

See the IBM COBOL for VSE/ESA Language Reference for discussions of COBOL
expression evaluation.

Expressions are evaluated according to COBOL rules applying to the options
specified in [‘The Debugging Environment Provided for COBOL Programs” on|
Conditions are the same ones that exist for program statements.

Using Constants in Expressions
During your Debug Tool session you can use expressions that use string constants
as one operand, as well as expressions that include variable names or number
constants as single operands. All COBOL string constant types discussed in IBM
COBOL for VSE/ESA Language Reference are valid in Debug Tool, with the
following restriction:

e When you specify a hexadecimal (X'n') constant, no padding takes place. If
you need a fullword value, you must specify a full word.

The following COBOL figurative constants are supported:

ZERO ZEROS ZEROES

SPACE, SPACES

HIGH-VALUE, HIGH-VALUES

LOW-VALUE, LOW-VALUES

QUOTE, QUOTES

NULL, NULLS

Any of the above preceded by ALL
Symbolic-character (whether or not preceded by ALL).

Additionally, Debug Tool allows the use of a hexadecimal constant. This
H-constant is a fullword value that can be specified in hex using numeric-hex-literal
format (hexadecimal characters only, delimited by either quotation marks (") or
apostrophes (') and preceded by H). The value is right-justified and padded on the
left with zeros. The following example:

LIST STORAGE (H'20cd@');

displays the contents at a given address in hexadecimal format. You can use this
type of constant with the SET command. The following example:

SET ptr TO H'124bf';

assigns a hexadecimal value of 124BF to the variable ptr.

Chapter 10. Using Debug Tool with COBOL Programs 173

Using Debug Tool with COBOL Programs

Using Debug Tool Functions with COBOL

Debug Tool provides certain functions you can use to find out more information
about program variables and storage.

Using %HEX

You can use the %HEX function with the LIST command to display the
hexadecimal value of an operand. For example, to display the external
representation of the packed decimal pvar3, defined as PIC 9(9), from 1234 as its
hexadecimal (or internal) equivalent, enter:

LIST %HEX (pvar3);

The Log window displays the hexadecimal string 01234F.

Using the %STORAGE Function
This Debug Tool function allows you to reference storage by address and length.
By using the %STORAGE function as the reference when setting a CHANGE
breakpoint, you can watch specific areas of storage for changes. For example, to
monitor eight bytes of storage at the hex address 22222 for changes, enter:

AT CHANGE %STORAGE (H'00022222', 8)
LIST 'Storage has changed at Hex address 22222'

For more information about the functions described above, including the proper
syntax, see[‘Debug Tool's Built-in Functions” on page 134

Using Qualification for COBOL

Qualification is a method of specifying an object through the use of qualifiers, and
changing the point of view from one block to another so you can manipulate data
not known to the currently executing block. For example, the assignment MOVE 5
TO x; does not appear to be difficult for Debug Tool to process. However, you
might have more than one variable named x. You must tell Debug Tool which
variable x to assign the value of five.

You can use qualification to specify to what compile unit or block a particular
variable belongs. When Debug Tool is invoked, there is a default qualification
established for the currently executing block—it is implicitly qualified. Thus, you
must explicitly qualify your references to all statement numbers and variable names
in any other block. It is necessary to do this when you are testing a compile unit
that calls one or more blocks or compile units. You might need to specify what
block contains a particular statement number or variable name when issuing
commands.

Using Qualifiers
Qualifiers are combinations of phases, compile units, blocks, section names, or
paragraph names punctuated by a combination of greater-than signs (>), colons,
and the COBOL data qualification notation, OF or IN, that precede referenced
statement numbers or variable names.

When qualifying objects on a block level, use only the COBOL form of data

qualification. If data names are unique, or defined as GLOBAL, they do not need
to be qualified to the block level.

174 Debug Tool/VSE V1R1 User's Guide and Reference

Using Debug Tool with COBOL Programs

The following is a fully qualified object:
PHASE_NAME: :>CU_NAME :>BLOCK_NAME:>object;

PHASE_NAME is the name of the phase. It is required only when the program
consists of multiple phases and you want to change the qualification to other than
the current phase. PHASE_NAME can also be the Debug Tool variable %LOAD.

CU_NAME is the name of the compilation unit. The CU_NAME must be the fully
qualified compilation unit name. It is required only when you want to change the
qualification to other than the currently qualified compilation unit. It can be the
Debug Tool variable %CU.

BLOCK_NAME is the name of the block. The BLOCK_NAME is required only
when you want to change the qualification to other than the currently qualified
block. It can be the Debug Tool variable %BLOCK. Remember to enclose the
block name in double () or single (‘) quotes if case sensitive. If the name is not
inside quotes, Debug Tool converts the name to upper case.

The following two screens are samples of two similar COBOL programs (blocks):

MAIN

01 VARL.
02 VAR2.
03 VAR3 PIC XX.
01 VAR4 PIC 99.

*xxxxxxrrxxxxxx*MOVE commands entered herexssx*x*xk*x*xkkk**

SUBPROG

01 VARL.
02 VAR2.
03 VAR3 PIC XX.
01 VAR4 PIC 99.
01 VAR5 PIC 99.

*xkkkkkkkkkxx%%% [ST commands entered herexssxsskkkkkkkkkx

You can distinguish between the main and subprog blocks using qualification. If
you enter the following MOVE commands when main is the currently executing
block:

MOVE 8 TO vard;

MOVE 9 TO subprog:>varéd;

MOVE 'A' TO var3 OF var2 OF varl;

MOVE 'B' TO subprog:>var3 OF var2 OF varl;

and the following LIST commands when subprog is the currently executing block:

LIST TITLED vard;

LIST TITLED main:>vard;

LIST TITLED var3 OF var2 OF varl;

LIST TITLED main:>var3 OF var2 OF varl;

Chapter 10. Using Debug Tool with COBOL Programs 175

Using Debug Tool with COBOL Programs

each LIST command results in the following output (without the commentary) in
your Log window:

VAR4 = 9; /* vard with no qualification refers to a variable */
/* in the currently executing block (subprog). */
/* Therefore, the LIST command displays the value of 9.x%/

MAIN:>VAR4 = 8 /* vard is qualified to main. */
/* Therefore, the LIST command displays 8, */
/* the value of the variable declared in main. */

VAR3 OF VAR2 OF VARL = 'B';
/* In this example, although the data qualification =*/
/* of var3 is OF var2 OF varl, the */
/* program qualification defaults to the currently */
/* executing block and the LIST command displays */
/* 'B', the value declared in subprog. */

VAR3 OF VAR2 OF VARl = 'A'

/* var3 is again qualified to var2 OF varl */
/* but further qualified to main. x/
/* Therefore, the LIST command displays */
/* 'A', the value declared in main. */

The above method of qualifying variables is necessary for command files.

Changing the Point of View

The point of view is usually the currently executing block. You can also get to
inaccessible data by changing the point of view using the SET QUALIFY command.
The SET keyword is optional. For example, if the point of view (current execution)
is in main and you want to issue several commands using variables declared in
subprog, you can change the point of view by issuing the following:

QUALIFY BLOCK subprog;

You can then issue commands using the variables declared in subprog without
using qualifiers. Debug Tool does not see the variables declared in procedure
main. For example, the following assignment commands are valid with the subprog
point of view:

MOVE 10 TO var5;

However, if you want to display the value of a variable in main while the point of
view is still in subprog, you must use a qualifier, as shown in the following example:

LIST (main:>var-name);

The above method of changing the point of view is necessary for command files.

176 Debug Tool/VSE V1R1 User's Guide and Reference

Using Debug Tool with PL/I Programs

Chapter 11. Using Debug Tool with PL/I Programs

This chapter provides information on the way Debug Tool interacts with PL/I.

It covers such areas as the debugging environment provided by Debug Tool, the
Debug Tool subset of PL/I statements, Debug Tool evaluation of PL/I expressions,
methods of program qualification, and changing the point of view among several
phases.

This chapter also discusses variables: accessing program variables, declaring
temporary variables, displaying values of PL/I variables, assigning values to PL/I
variables, using Debug Tool variables in PL/I, and support of PL/I freeform DBCS
input when testing with Debug Tool.

Debug Tool Commands

To make testing PL/I programs easier, Debug Tool allows you to write debugging
commands in a manner resembling PL/I statements. It does this by providing an
interpretive subset of PL/I language statements. This interpretive subset is a list of
commands recognized by Debug Tool that either closely resemble or duplicate the
syntax and action of the appropriate PL/I statement. This not only allows you to
work with familiar commands, but also simplifies the insertion into your source code
of program patches developed while in your Debug Tool session.

The interpretive subset of PL/I statements recognized by Debug Tool is shown in
[Table 24 on page 353 This subset of statements is valid only when the current
programming language is PL/I.

For specific usage notes concerning each command, see the appropriate section of
[Part 3, “Debug Tool Reference” on page 193}

For explanations of statement usage and keyword meaning, see IBM PL/I for
VSE/ESA Language Reference.

PL/I Language Statements

PL/I statements are entered as Debug Tool commands. The following types of
Debug Tool commands will support the syntax of the PL/I statements:

Expression
This command evaluates an expression.
Block
BEGIN/END, DO/END, PROCEDURE/END
These commands provide a means of grouping any number of Debug
Tool commands into "one" command.
Conditional

IF/THEN, SELECT/WHEN/END

These commands evaluate an expression and control the flow of
execution of Debug Tool commands according to the resulting value.

© Copyright IBM Corp. 1995, 1996 177

Using Debug Tool with PL/I Programs

Declaration
DECLARE or DCL

These commands provide a means for declaring session variables.
Looping
DO/WHILE/UNTIL/END

These commands provide a means to program an iterative or conditional
loop as a Debug Tool command.

Transfer of Control
GOTO, ON

These commands provide a means to unconditionally alter the flow of
execution of a group of commands.

Using PL/I Variables with Debug Tool

Debug Tool can process all program variables that are valid in PL/I. It allows you
to assign and display the values of variables during your session. It also allows
you to declare temporary variables with the recognized PL/I declarations to suit
your testing needs.

Accessing Program Variables

Debug Tool obtains information about a program variable by name using
information that is contained in the symbol table built by the compiler. The symbol
table is made available to the compiler by compiling with TEST(SYM) (see
[‘Compiling a PL/I Program with the Compile-Time TEST Option” on page 19| for
more information).

Displaying Values of PL/I Variables or Expressions
To display the values of variables or expressions, issue the LIST command. The
LIST command causes Debug Tool to log and display the current values (and
names if requested) of variables, including the evaluated results of expressions.
See [‘LIST Command” on page 272| for more information.

Suppose you want to display the program variables X, row(X), and col(X), and
their values at line 25. If you issue the following command:

AT 25 LIST (X, row(X), col(X)); GO;
Debug Tool sets a breakpoint at line 25 (AT), begins execution of the program
(GO), stops at line 25, and displays the variable names and their values.

If you want to see the result of their addition, enter:

AT 25 LIST (X + row(X) + col(X)); GO;

Debug Tool sets a breakpoint at line 25 (AT), begins execution of the program
(GO), stops at line 25, and displays the result of the expression.

Put commas between the variables when listing more than one. If you do not want
to display the variable names when issuing the LIST command, enter LIST
UNTITLED.

Debug Tool uses the symbol table to obtain information about program variables,
controlled variables, automatic variables, and program control constants such as file

178 Debug Tool/VSE V1R1 User's Guide and Reference

Using Debug Tool with PL/I Programs

and entry constants and also CONDITION condition names. Based variables,
controlled variables, automatic variables and parameters can be used with Debug
Tool only after storage has been allocated for them in the program. An exception
to this is DESCRIBE ATTRIBUTES, which can be used to display attributes of a
variable at any time.

Variables that are based on:
e An OFFSET variable,
e An expression,
¢ A pointer that either is based or defined,
e A parameter, or
¢ A member of either an array or a structure

must be explicitly qualified when used in expressions. For example, assume you
made the following declaration:

DECLARE P1 POINTER;
DECLARE P2 POINTER BASED(P1);
DECLARE DX FIXED BIN(31) BASED(P2);

You would not be able to reference the variable DX directly by name. You can only
reference it by specifying either:

P2->DX
or
P1->p2->DX

The following types of program variables cannot be used with Debug Tool:
e iSUB defined variables

e Variables defined:

— On a controlled variable
— On an array with one or more adjustable bounds
— With a POSITION attribute that specifies something other than a constant

¢ Variables that are members of a based structure declared with the REFER
options.

Structures

You cannot directly reference elements of arrays of structures. For example,
suppose a structure called PAYROLL is declared as follows:

Declare 1 Payrol1(100),

2 Name,
4 Last char(20),
4 First char(15),
2 Hours,

4 Regular Fixed Decimal(5,2),
4 Overtime Fixed Decimal(5,2);

Chapter 11. Using Debug Tool with PL/I Programs 179

Using Debug Tool with PL/I Programs

Given the way PAYROLL is declared, the following examples of commands are
valid in Debug Tool:

LIST (PAYROLL(1).NAME.LAST, PAYROLL(1).HOURS.REGULAR);
LIST (ADDR (PAYROLL)) ;

LIST STORAGE (PAYROLL.HOURS, 128);

Given the way PAYROLL is declared, the following examples of commands are
invalid in Debug Tool:

LIST (PAYROLL(1));
LIST (ADDR (PAYROLL(5)));

LIST STORAGE (PAYROLL(15).HOURS, 128));

You might want or need to declare temporary variables, also known as session
variables, during your Debug Tool session. Debug Tool supports all PL/I scalar
session variables. In addition, arrays and structures may be declared.

The relevant variable assignment commands are similar to their counterparts in the
PL/I language. The rules used for forming variable names in PL/I also apply to the
declaration of temporary variables during a Debug Tool session. For more
information on PL/I variable names, see IBM PL/I for VSE/ESA Language
Reference.

Refer to[Table 11 on page 247] for variables whose attributes will let them be
properly used by other programming languages.

You cannot initialize temporary variables in declarations. However, you can use an
assignment statement or function call to initialize a temporary variable.

To declare a floating-point variable called maxi, enter the following PL/I declaration:
dcl maxi float dec(6) ;

In Debug Tool you can declare coded arithmetic, string, event, label, and locator
variables, as well as arrays and structures of these.

If you declare a temporary variable with the same name as a programming
variable, the temporary variable hides the programming variable. To reference the
programming variable, you must qualify it. For example:

main:>x /* for the program variable x */
x /* for the session variable x */

Session variables remain in effect for the entire debug session, unless they are
cleared using the CLEAR command.

For more on qualification, see [‘Using Qualification for PL/I” on page 189] For more
on declarations, see FDECLARE Command (PL/)” on page 251}

180 Debug Tool/VSE V1R1 User's Guide and Reference

Using Debug Tool with PL/I Programs

LIST STORAGE
For LIST STORAGE address, address can be a POINTER, a hexadecimal PX
constant, or the ADDR built-in function.

Assigning Values to PL/I Variables

To assign a value to a PL/I variable, you use an assignment command. See
[‘Assignment Command (PL/I)” on page 207| for syntax information. Assignment
commands assign a value to the left operand. The left operand must be a
modifiable variable.

PL/I contains two types of assignment operators: simple and compound. A simple
assignment operator gives the value of the right operand to the left operand.

The following example demonstrates how to assign the value of number to the
member employee of the structure payroll:

payroll.employee = number;

Compound assignment operators perform an operation on both operands and give
the result of that operation to the left operand. For example, this expression gives
the value of ndex plus 2 to the variable ndex:

ndex = ndex + 2;

Using Debug Tool Variables in PL/I

Debug Tool variables, as shown in Table 7, provide information about your
program that you can use during your session. These variables are distinguished
by a percent character (%) as the first character in their names. To display the
values of any of them during your session, use the LIST command.

Table 7 (Page 1 of 2). PL/I Attributes for Debug Tool Variables

Debug Tool PL/

Variable Attributes Description

%GPRn FIXED Represents general-purpose registers.
BIN(31,0)

%FPRnN FLOAT Represents single-precision floating-point registers.
DEC(6)

%LPRnN FLOAT Represents double-precision floating-point registers.
DEC(16)

%EPRN FLOAT Represents extended-precision floating-point registers.
DEC(33)

%ADDRESS POINTER Contains the address of the location where your

program was interrupted.

%AMODE FIXED Contains the current AMODE of the suspended program
BIN(15,0) (either 24 or 31).

%BLOCK CHARJ(j) Contains the name of the current block.

%CAAADDRESS POINTER Contains the address of the CAA control block
associated with the suspended program.

%CONDITION CHAR()) Contains the name (or number) of the condition
identification when Debug Tool is entered because of an
HLL or LE/VSE condition.

Chapter 11. Using Debug Tool with PL/I Programs 181

Using Debug Tool with PL/I Programs

182

Table 7 (Page 2 of 2). PL/I Attributes for Debug Tool Variables

Debug Tool PL/

Variable Attributes Description

%COUNTRY CHARJ(j) Contains the current country code.

%CU CHARJ(j) Contains the name of the current compilation unit.
Equivalent to % PROGRAM.

%EPA POINTER Contains the address of the primary entry point in the
currently interrupted program.

%HARDWARE CHAR(j) Identifies the type of hardware where the application is
running.

%LINE CHAR(j) Contains the current line number.
Equivalent to %STATEMENT.

%LOAD CHAR(j) Contains the name of the phase of the current program.

%NLANGUAGE CHAR(j) Contains the national language currently being used.

%PATHCODE FIXED Contains an integer value identifying the type of change

BIN(15,0) occurring when Debug Tool is entered because of a

path breakpoint.

%PLANGUAGE CHAR(j) Contains the current programming language.

%PROGRAM CHAR(j) Contains the name of the primary entry point of the
current program.
Equivalent to %CU.

%RC FIXED Contains a return code whenever a Debug Tool

BIN(15,0) command ends.

%RUNMODE CHAR(j) Contains a string identifying the presentation mode of
Debug Tool.

%STATEMENT CHAR(j) Contains the current statement number.
Equivalent to %LINE.

%SUBSYSTEM CHAR(j) Contains the name of the underlying subsystem, if any,
where the program is executing.

%SYSTEM CHAR(j) Contains the name of the operating system supporting

the program.

You can use all Debug Tool variables in expressions. Additionally, the variables
representing general and floating-point registers are modifiable and can be used as
the targets of assignment commands.

Note: When modifying register values, do not modify the base register.

Detailed descriptions of the Debug Tool variables follow.

%GPRO, %GPR1,...,%GPR15
Represent general-purpose registers at the point of interruption in a PL/I
program. You can use them in expressions:

list (%GPR5 + 10);

and as targets of assignments:
%GPR5 = nametable;

Debug Tool/VSE V1R1 User's Guide and Reference

Using Debug Tool with PL/I Programs

Notes:

e If you change a %GPRn register, the change is reflected when you
resume program execution.

¢ Only %GPR12 can be used at external entry.

* Assigning new values to variables %GPR12 and %GPR13 does not
result in an error, however, subsequent processing by Debug Tool
will reset them to their previous values.

e |t is possible to cause the program base register to be lost if you
change that general-purpose register.

%FPRO, %FPR2, %FPR4, %FPR6
Represent single-precision floating-point registers and are equivalent to FLOAT
DEC(6) or FLOAT BIN(21) variables. You can use them in expressions:

x = %FPR4 / 6.3;

and as targets of assignments:
%FPRO = 3.14152;

%LPRO, %LPR2, %LPR4, %LPR6
Represent the double-precision floating-point registers and are equivalent to
FLOAT DEC(16) or FLOAT BIN(53) variables. Similar to the single-precision
floating-point registers (%FPRs), you can use these registers in expressions
and as targets of assignments.

%EPRO, %EPR4
Represent the extended-precision floating-point registers, and are equivalent to
FLOAT DEC(33) or FLOAT BIN(109) variables. Similar to the single-precision
floating-point registers (%FPRs), you can use these registers in expressions
and as targets of assignments.

%ADDRESS
Contains the address of the location where the program was interrupted.

%AMODE
Contains the current AMODE of the suspended program. Possible values are
24 or 31.

%BLOCK
Contains the name of the current block. To display the name of the current
block, you can use the LIST command or issue:

DESCRIBE PROGRAM;

You can change or override the value of %BLOCK by using the SET QUALIFY
command.

%CAAADDRESS
Contains the address of the CAA control block associated with the suspended
program.

%CONDITION
Contains the name (or number) of the condition identification when Debug Tool
is entered because of an HLL or LE/VSE condition.

Chapter 11. Using Debug Tool with PL/I Programs 183

Using Debug Tool with PL/I Programs

%COUNTRY
Contains the current country code.

%CU
Contains the name of the primary entry point of the current program.

You can change or override the value of %CU by using the QUALIFY
command.

%CU is equivalent to %PROGRAM.

%EPA
Contains the address of the primary entry point of the currently interrupted
program.

%HARDWARE
Identifies the type of hardware where the application program is running. A
possible value is 370/ESA.

%LINE
Contains the current line (statement) number. This value can include a period
since the current line can be a statement other than the first statement on a
source line. For example, if 5LINE = 5.5, the current statement is the fifth
statement on the fifth source line.

If the program is at the entry or exit of a block, %LINE contains ENTRY or
EXIT respectively.

If the line number cannot be determined (for example, if a run-time line number
does not exist or the address where the program is interrupted is not in the
program), %LINE contains an asterisk ().

%LINE is equivalent to %STATEMENT.

%LOAD
Contains the name of the currently qualified phase and is used when an
unqualified reference to a program or variable is made. If the currently
qualified phase is the one initially loaded, %LOAD contains a single asterisk (*).

Whenever control is transferred to Debug Tool, %LOAD is set to the name of
the currently executing phase (or to an asterisk in the case of the initial phase).
You can change or override the value of %LOAD by using the SET QUALIFY
command.

For phases to be recognized by Debug Tool, they must have been loaded by a
language call and not through a direct operating system load command.

%NLANGUAGE
Indicates the national language currently in use. Its possible values include:

ENGLISH
UENGLISH
JAPANESE

%PATHCODE
Contains an integer value identifying the kind of path change taking place when
Debug Tool is entered because of a path breakpoint. Possible values are:

-1 Debug Tool is not in control as the result of a path or attention
situation.

184 Debug Tool/VSE V1R1 User's Guide and Reference

Using Debug Tool with PL/I Programs

0 An attention interrupt occurred.

1 A block has been entered.

2 A block is about to be exited.

3 Control has reached a label constant.

4 Control is being sent somewhere else as the result of a CALL or a
function reference.

5 Control is returning from a CALL invocation or a function reference.
Register 15, if it contains a return code, has not yet been stored.

6 Some logic contained in a complex DO statement is about to be
executed.
The logic following an IF..THEN is about to be executed.
The logic following an ELSE is about to be executed.
The logic following a WHEN within a select-group is about to be
executed.

10 The logic following an OTHERWISE within a select-group is about to

be executed.

Values in the range 3—10 can only be assigned to %PATHCODE if your
program was compiled with an option supporting path hooks.

%PLANGUAGE

Indicates the programming language currently in use.

%PROGRAM

The name of the primary entry point of the current program.

You can change or override the value of %PROGRAM by using the QUALIFY
command.

%PROGRAM is equivalent to %CU.

%RC

Contains a return code whenever a Debug Tool command ends.

%RC initially has a value of zero unless the log file cannot be opened, in which
case it has a value of -1.

The %RC return code is a Debug Tool variable. It is not related to the return
code that can be found in Register 15.

%RUNMODE

Contains a string identifying the presentation mode of Debug Tool. Possible
values are:

SCREEN
BATCH

%STATEMENT

Contains the current statement number. This value can include a period since
the current statement can be one other than the first statement in a source line.

If the program is at the entry or exit of a block, %STATEMENT contains
ENTRY or EXIT, respectively.

Chapter 11. Using Debug Tool with PL/I Programs 185

Using Debug Tool with PL/I Programs

If the statement number cannot be determined (for example, if a run-time
statement number does not exist or the address where the program is
interrupted is not in the program), %STATEMENT contains an asterisk (*).

%STATEMENT is equivalent to %LINE.

%SUBSYSTEM

Contains the name of the underlying subsystem, if any, where the program is
executing. Possible values are:

CICS
NONE

%SYSTEM

Contains the name of the operating system supporting the program. The only
possible value is: VSE.

PL/I Expressions

When the current programming language is PL/I, expression interpretation is similar
to that defined in the PL/I language, except for restrictions as noted in
[‘Unsupported PL/I Language Elements” on page 354}

The Debug Tool expression is similar to the PL/I expression. If the source of the
command is a variable-length record source (such as your terminal) and if the
expression extends across more than one line, a continuation character (an SBCS
hyphen) must be specified at the end of all but the last line.

All PL/I constant types are supported, plus the Debug Tool PX constant.

Note: A PX constant allows the input of a hexadecimal value in the format
'000abcde'PX, where 000ABCDE is a valid hexadecimal number.

Using DBCS Characters - Freeform Input

Statements can be entered in PL/I's DBCS freeform. This means that statements
can freely use shift codes as long as the statement is not ambiguous.

This will change the description or characteristics of LIST NAMES in that:
LIST NAMES db<.c.skk.w>ord

will search for
<.D.B.C.Skk.W.0.R.D>

This will result in different behavior depending upon the language. For example,
the following will find a<kk>b in C and <.Akk.b> in PL/I.

LIST NAMES a<kk>=*
where <kk> is shiftout-kanji-shiftin.

Freeform will be added to the parser and will be in effect while the current
programming language is PL/I.

186 Debug Tool/VSE V1R1 User's Guide and Reference

Using Debug Tool with PL/I Programs

PL/l Built-In Functions

Debug Tool supports the following PL/I built-in functions:

Table 8. PL/I Built-In Functions

ABS CSTG2 LOG1 REAL
ACOS CURRENTSTORAGE LOG2 REPEAT
ADDR DATAFIELD LOW SAMEKEY
ALL DATE MPSTR SIN
ALLOCATION DATETIME NULL SIND
ANY DIM OFFSET SINH
ASIN EMPTY ONCHAR SQRT
ATAN ENTRYADDR ONCODE STATUS
ATAND ERF ONCOUNT STORAGE
ATANH ERFC ONFILE STRING
BINARYVALUE EXP ONKEY SUBSTR
BINVALUE! GRAPHIC ONLOC SYSNULL
BIT HBOUND ONSOURCE TAN
BOOL HEX PLIRETV TAND
CHAR HIGH POINTER TANH
COMPLETION IMAG POINTERADD TIME
Ccos LBOUND POINTERVALUE TRANSLATE
COSD LENGTH PTRADD3 UNSPEC
COSH LINENO PTRVALUE4 VERIFY
COUNT LOG

Notes:

1. Abbreviation of BINARYVALUE.

2. Abbreviation of CURRENTSTORAGE.
3. Abbreviation of POINTERADD.

4. Abbreviation of POINTERVALUE.

Using SET WARNING Command with Built-Ins

Certain checks are performed when the Debug Tool SET WARNING command
setting is ON and a built-in function (BIF) is evaluated:

e Division by zero

e The remainder (%) operator for a zero value in the second operand

e Array subscript out of bounds for defined arrays

 Bit shifting by a number that is negative or greater than 32

¢ On a built-in function call for an incorrect number of parameters or for
parameter type mismatches

e On a built-in function call for differing linkage calling conventions

These checks are restrictions that can be removed by issuing SET WARNING OFF.

Using Debug Tool Functions with PL/I

Debug Tool provides built-in functions for use during a debugging session. These
functions allow greater access to your programming environment and greater
control over your debugging session. Using these functions, you can reference
storage, translate the values of operands to hexadecimal characters, or access a
variable or parameter during a specific instance of a recursive procedure.

Chapter 11. Using Debug Tool with PL/I Programs 187

Using Debug Tool with PL/I Programs

Using %GENERATION

You can use %GENERATION to access a specific generation of a controlled
variable in your program. For example, if you have a program that allocates three
generations of the controlled variable contvar and you want to examine the
contents of the first generation of contvar, you can enter:

LIST %GENERATION(contvar,1);

If you want to assign the contents of the second generation of contvar to the latest
generation, you can enter:

%GENERATION(contvar,ALLOCATION(contvar)) = %GENERATION(contvar,2);

Using %HEX

When used with the LIST command, %HEX allows you to display the value of an
operand as a hexadecimal character string. For example, if you want to examine
the internal representation of the packed decimal variable zvarl whose external
representation is 235, you can enter:

LIST %HEX(zvarl);

The hexadecimal value of 235C is displayed in the Log window.

Using %STORAGE

%STORAGE allows you to reference storage by address and length. By using
%STORAGE as the reference when setting a CHANGE breakpoint, you can watch
specific areas of storage for changes. For example, to monitor eight bytes of
storage at the hex address 22222 for changes, enter:

AT CHANGE %STORAGE ('00022222'PX, 8)
LIST 'Storage has changed at Hex address 22222'

Using %RECURSION

%RECURSION allows you to access an automatic variable or a parameter in a
specific instance of a recursive function. When you use %RECURSION, remember
that:

 If the expression has a value of 1, the oldest generation is referenced. The
higher the value of the expression, the more recent the generation of the
variable Debug Tool references.

¢ %RECURSION can be used like a Debug Tool variable.

Using %INSTANCES

%INSTANCES returns the maximum value of %RECURSION (that is, the most
recent recursion number) for a given block. %INSTANCES can be used like a
Debug Tool variable.

%INSTANCES and %RECURSION can be used together to determine the number
of times a function is recursively called. They can also give you access to an
automatic variable or parameter in a specific instance of a recursive procedure.
Assume, for example, your program contains these statements:

188 Debug Tool/VSE V1R1 User's Guide and Reference

Using Debug Tool with PL/I Programs

PRMAIN: procedure;

RECFN: procedure(cnt) returns (fixed bin(31,0));
dcl 1 cnt fixed bin (31,0);
cnt = ¢cnt - 1;
if cnt = 0 then
call PLITEST;
return(0);
end RECFN;

At this point, the call to PLITEST gives control to Debug Tool, and you are
prompted for commands. If you enter:

LIST %INSTANCES(cnt);
Your Log window displays the number of times RECFN was interactively called.

If you enter:
%RECURSION(i, 1);

you receive the value of 'i' at the first call of RECFN.

If necessary, you can use qualification to specify the parameter. For example, if
the current point of execution is in %block2, and %block3 is a recursive function
containing the variable x, you can write an expression using x by qualifying the
variable, as follows:

%RECURSION(prmain:>%block3:>x, %INSTANCES(prmain:>%block3:>x, y+3)) = 10;

For the proper syntax of the functions described above, see [‘Debug Tool's Built-in|
[Functions” on page 134}

Using Qualification for PL/I

Qualification is a method of specifying an “object” through the use of qualifiers, and
changing the point of view from one block to another so you can manipulate data
not known to the currently executing block. For example, the assignment x = 5;
does not appear to be difficult for Debug Tool to process. However, you might
have more than one variable named x. You must tell Debug Tool which variable x
to assign the value of five.

You can use qualification to specify to what compile unit or block a particular
variable belongs. When Debug Tool is invoked, there is a default qualification
established for the currently executing block—it is implicitly qualified. Thus, you
must explicitly qualify your references to all statement numbers and variable names
in any other block. It is necessary to do this when you are testing a compile unit
that calls one or more blocks or compile units. You might need to specify what
block contains a particular statement number or variable name when issuing
commands.

Using Qualifiers
Qualifiers are combinations of phases, compile units, or blocks punctuated by a
combination of greater-than signs (>), and colons, that precede the “object” they
qualify. For example, the following is a fully qualified object:

PHASE_NAME: :>CU_NAME :>BLOCK_NAME:>object;

Chapter 11. Using Debug Tool with PL/I Programs 189

Using Debug Tool with PL/I Programs

PHASE_NAME is the name of the phase. It is required only when the program
consists of multiple phases and you want to change the qualification to other than
the current phase. PHASE_NAME can also be the Debug Tool variable %LOAD.

CU_NAME is the name of the compilation unit. The CU_NAME must be the fully
qualified compilation unit name. It is required only when you want to change the
qualification to other than the currently qualified compilation unit. It can be the
Debug Tool variable %CU.

BLOCK_NAME is the name of the block. The BLOCK_NAME is required only
when you want to change the qualification to other than the currently qualified
block. It can be the Debug Tool variable %BLOCK. Remember to enclose the
block name in double () or single (‘) quotes if case sensitive. If the name is not
inside quotes, Debug Tool converts the name to upper case.

If variable names are unique, or defined as GLOBAL, they do not need to be
qualified at the block level.

The following two screens are samples of two similar PL/I programs (blocks):

PRMAIN: PROCEDURE;

dcl 1 VARL,
2 VARZ,
3 VAR3 CHAR(2),
1 VAR4 FIXED BIN(15,0);

/* Assignment commands entered here */

SUBPROG: PROCEDURE;

dcl 1 VARL,
2 VARZ,
3 VAR3 CHAR(2) ,
1 VAR4 FIXED BIN(15,0),
1 VAR5 CHAR(2) ;

/* LIST commands entered here */

You can distinguish between the prmain and subprog blocks using qualification. If
you enter the following assignment commands when prmain is the currently
executing block:

vard = 8;

subprog:>var4 = 9;

varl.var2.var3 = 'A';

subprog:>varl.var2.var3 = 'B';

and the following LIST commands when subprog is the currently executing block:

LIST TITLED var4;

LIST TITLED prmain:>vard;

LIST TITLED varl.var2.var3;

LIST TITLED prmain:>varl.var2.var3;

190 Debug Tool/VSE V1R1 User's Guide and Reference

Using Debug Tool with PL/I Programs

each LIST command results in the following output (without the comments) in your
Log window:

VAR4 = 9; /* vard with no qualification refers to a variable */
/* in the currently executing block (subprog). */
/* Therefore, the LIST command displays the value of 9.x%/

PRMAIN:>VAR4 = 8 /* vard is qualified to prmain. */
/* Therefore, the LIST command displays 8, */
/* the value of the variable declared in prmain. */

VARL1.VAR2.VAR3 = 'B';
/* In this example, although the data qualification =*/

/* of var3 is varl.var2.var3, the program */
/* qualification defaults to the currently */
/* executing block and the LIST command displays */
/* 'B', the value declared in subprog. */

PRMAIN:>VAR1.VAR2.VAR3 = 'A’

/* var3 is again qualified to varl.var2.var3 */
/* but further qualified to prmain. */
/* Therefore, the LIST command displays */
/* 'A', the value declared in prmain. */

The above method of qualifying variables is necessary for command files.

Changing the Point of View

The point of view is usually the currently executing block. You can also get to
inaccessible data by changing the point of view using the SET QUALIFY command.
The SET keyword is optional. For example, if the point of view (current execution)
is in prmain and you want to issue several commands using variables declared in
subprog, you can change the point of view by issuing the following:

QUALIFY BLOCK subprog;

You can then issue commands using the variables declared in subprog without
using qualifiers. Debug Tool does not see the variables declared in procedure
prmain. For example, the following assignment commands are valid with the
subprog point of view:

varb = 10;

However, if you want to display the value of a variable in prmain while the point of
view is still in subprog, you must use a qualifier, as shown in the following example:

LIST (main:>var-name);

The above method of changing the point of view is necessary for command files.

Chapter 11. Using Debug Tool with PL/I Programs 191

Using Debug Tool with PL/I Programs

192 Debug Tool/VSE V1R1 User's Guide and Reference

Part 3. Debug Tool Reference

© Copyright IBM Corp. 1995, 1996 193

Using Debug Tool Commands

Chapter 12. Using Debug Tool Commands

This chapter describes Debug Tool's windowed interfaces, command usage modes,
alternate methods of command input, variables, and common syntax elements. It
also gives you task-oriented information such as interpreting checklist boxes,
entering commands, getting help, qualifying variables, and changing the point of
view.

Command Modes and Language Support

Commands can be issued in two modes: full-screen and batch. In addition, some
commands are valid only in certain programming languages or operation modes.
Unless otherwise noted, Debug Tool commands are valid in all modes, and for all
supported languages.

Entering Commands

This section provides information for entering commands in Debug Tool. It explains
the command format, the character set and case, abbreviating or truncating
keywords, continuing multiline commands, the significance of blanks, using
comments or constants, and retrieving commands from the Log or Source windows.

Command Format

For input typed directly at the terminal, input is free-form, optionally starting in
column 1. Separate multiple commands on a line with semicolons. The
terminating semicolon (;) is optional for a single command, or the last command in
a sequence of commands.

For input that comes from a primary commands or USE file, all of the Debug Tool
commands must be terminated with a semicolon except for the C block command.
The commands must conform to the syntax of the current programming language.
For example, for COBOL they must start in or beyond column 8 and not continue
beyond column 72.

Character Set and Case

The character set and case vary with the double-byte character set (DBCS) or the
current programming language setting in a Debug Tool session.

Using DBCS
When the DBCS setting is ON, you can specify DBCS characters in the following
portions of all the Debug Tool commands:

e Commentary text
e Character data valid in the current programming language

e Symbolic identifiers such as variable names (for COBOL, this includes session
variables), entry names, block names, and so forth (if the names contain DBCS
characters in the application program).

194 © Copyright IBM Corp. 1995, 1996

Using Debug Tool Commands

When the DBCS setting is OFF, double-byte data is not correctly interpreted or
displayed. However, if you use the shift-in and shift-out codes as data instead of
DBCS indicators, you should issue SET DBCS OFF.

For more details on using DBCS characters, see ['SET DBCS” on page 306}

Using C

When the current programming language setting is C:

* All keywords and identifiers must be the correct case. Debug Tool does not do
conversion to uppercase.

e DBCS characters are allowed only within comments and literals.

 Either trigraphs or the equivalent special characters can be used. Trigraphs
are treated as their equivalents at all times. For example, FIND "??<" would
find not only "??<" but also "{".

e The vertical bar (I) can be entered for the following C operations: bitwise or (l),
logical or (Il), and bitwise assignment or (l=).

e There are alternate code points for the following C characters: vertical bar (l),
left brace ({), right brace (}), left bracket ([), and right bracket (]). Although
alternate code points will be accepted as input for the braces and brackets, the
primary code points will always be logged. See LE/VSE C Run-Time
Programming Guide for an explanation of the alternate and primary code points
in C.

Using COBOL and PL/I

When the current programming language setting is not C, commands can generally
be either uppercase, lowercase, or mixed. Characters in the range a through z are
automatically converted to uppercase except within comments and quoted literals.

Also, in PL/I, only "I" and "=" can be used as the Boolean operators for OR and
NOT.

Abbreviating Keywords

When you issue the Debug Tool commands, you can truncate most command
keywords. You cannot truncate:

e reserved keywords for the different programming languages,

» special case keywords such as BEGIN, CALL, COMMENT, COMPUTE, END,
FILE (in the SET INTERCEPT and SET LOG commands), GOTO, INPUT,
LISTINGS (in the SET DEFAULT LISTINGS command), or USE.

e PROCEDURE can only be abbreviated as PROC.

The COMMENT, INPUT, and USE keywords, take precedence over other keywords
and identifiers. If one of these keywords is followed by a blank, it is always parsed
as the corresponding command. Hence, if you want to assign the value 2 to a
variable named COMMENT and the current programming language setting is C, the
"=" must be abutted to the reference, as in "COMMENT<no space>= 2;" not
"COMMENT<space>= 2;". If you want to define a procedure named USE, you
must enter "USE<no space>: procedure;" not "USE<space>: procedure;".

When you truncate, you need only enter enough characters of the command to

distinguish the command from all other valid Debug Tool commands. You should
not use truncations in a commands file or compile them into programs because

Chapter 12. Using Debug Tool Commands 195

Using Debug Tool Commands

they may become ambiguous in a subsequent release. The following shows
examples of Debug Tool command truncations.

If you enter It will be

the following command... interpreted as...
A3 AT 3

G GO

QBB QUALIFY BLOCK B
QQ QUERY QUALIFY
Q QUIT

If you specify a truncation that is also a variable in your program, the keyword is
chosen if this is the only ambiguity. For example, LIST A does not display the
value of variable A, but executes the LIST AT command, listing your current AT
breakpoints. To display the value of A, issue LIST (A).

In addition, ambiguous commands that cannot be resolved cause an error message
and are not performed (that is, there are two commands that could be interpreted
by the truncation specified). For example, D A A; is an ambiguous truncation since
it could either be DESCRIBE ATTRIBUTES a; or DISABLE AT APPEARANCE;. Instead,
you would have to enter DE A A; if you wanted DESCRIBE ATTRIBUTES a; or DI A A;
if you wanted DISABLE AT APPEARANCE;. There are, of course, other variations that
would work as well (for example, D ATT A;).

Continuation (Full-screen mode)

If you need to use more than one line when entering a command, you must use a
continuation character.

When you are entering a command in interactive mode, the continuation character
must be the last nonblank character in each line that is to be continued. In the
following example:

LIST (" this is a very very very VVVVVVVVVVVVVVVVVVVVVVVVVVVVV -
very long string");

the continuation character is the single-byte character set (SBCS) hyphen (-).

If you want to end a line with a character that would be interpreted as a
continuation character, follow that character with another valid nonblank character.

For example, in C, if you want to enter "i--", you could enter "(i--)" or "i--;". When
the current programming language setting is C, the back slash character (\) can
also be used.

When Debug Tool is awaiting the continuation of a command in full-screen mode,
you receive a continuation prompt of MORE ... until the command is completely
entered and processed.

Using File Input
The rules for line continuation when input comes from a commands file are
language-specific:

e When the current programming language setting is C, identifiers, keywords, and
literals can be continued from one line to the next if the back slash continuation

196 Debug Tool/VSE V1R1 User's Guide and Reference

Using Debug Tool Commands

character is used. The following is an example of the continuation character for
C:
LIST (" this is a very very very VVVVVVVVVVVVVVVVVVVVVVVVVVVVV\
very long string");

* When the current programming language setting is COBOL, columns 1 - 6 are
ignored by Debug Tool and input can be continued from one line to the next if

the SBCS hyphen (-) is used in column 7 of the next line. Command text must
begin in column 8 or later and end in or before column 72.

In literal string continuation, an additional double (") or single (') quote is
required in the continuation line, and the character following the quote is
considered to follow immediately after the last character in the continued line.
The following is an example of line continuation for COBOL:

123456 LIST (" this is a very very very vVVVVVVVVVVVVVVVVVVVVVV"
123456-"very long string");

Continuation is not allowed within a DBCS name or literal string when the
current programming language setting is COBOL.

Entering Multiline Commands without Continuation
You can enter the following command parts on separate lines without using the
SBCS hyphen (-) continuation character:

e Subcommands and the END keyword in the PROCEDURE command

e When the current programming language setting is C, statements that are part
of a compound or block statement

e When the current programming language setting is COBOL:
— EVALUATE

- Subcommands in WHEN and OTHER clauses
- END-EVALUATE keyword

- IF

- Subcommands in THEN and ELSE clauses
- END-IF keyword

— PERFORM

- Subcommands
- Subcommands in UNTIL clause
- END-PERFORM keyword

Significance of Blanks
Blanks cannot occur within keywords, identifiers, and numeric constants; however,
they can occur within character strings. Blanks between keywords, identifiers, or
constants are ignored except as delimiters. Blanks are required when no other
delimiter exists and ambiguity is possible.

Chapter 12. Using Debug Tool Commands 197

Using Debug Tool Commands

Comments

Constants

Debug Tool lets you insert descriptive comments into the command stream (except
within constants and other comments); however, the comment format depends on
the current programming language.

» For all supported programming languages, comments can be entered by:

— Enclosing the text in comment brackets "/*" and "*/". Comments can
occur anywhere a blank can occur between keywords, identifiers, and
numeric constants. Comments entered in this manner do not appear in the
session log.

— Using the COMMENT command to insert commentary text in the session
log. Comments entered in this manner cannot contain embedded
semicolons.

¢ When the current programming language setting is COBOL, comments can
also be entered by using an asterisk (*) in column 7. This is valid for file input
only.

Comments are most helpful in file input. For example, you can insert comments in
a USE file to explain and describe the actions of the commands.

Constants are entered as required by the current programming language setting.
Most constants defined for each of the supported HLLs are also supported by
Debug Tool. See [‘'C Expressions” on page 145|or [‘Using Constants in|
|[Expressions” on page 173 for more information.

Additionally, Debug Tool allows the use of hexadecimal constants in COBOL and
PL/I.

The COBOL H constant is a fullword value that can be specified in hex using
numeric-hex-literal format (hexadecimal characters only, delimited by either double
(") or single (') quotes and preceded by H). The value is right-justified and padded
on the left with zeros.

Note: The H constant can only be used where an address or POINTER variable
can be used. The COBOL hexadecimal notation for non-numeric literals,
such as MOVE X'C1C2C3C4' TO NON-PTR-VAR, should be used for all
other situations where a hexadecimal value is needed.

For example, to display the contents at a given address in hexadecimal format,
specify:
LIST STORAGE (H'20CDO');

The PL/I PX constant is a hexadecimal value, delimited by single quotes (') and
followed by PX. The value is right-justified and can be used in any context in which
a pointer value is allowed. For example, to display the contents at a given address
in hexadecimal format, specify:

LIST STORAGE ('20CDO'PX);

For COBOL only: You can use this type of constant with the SET command. For
example, to assign a hexadecimal value of 124BF to the variable ptr, specify:

SET ptr TO H"124BF";

198 Debug Tool/VSE V1R1 User's Guide and Reference

Using Debug Tool Commands

Retrieving Commands from the Log and Source Windows

When the SCREEN setting is ON, you can retrieve commands from your Log and
Source windows and have Debug Tool insert them on the command line.

To retrieve a line, move the cursor to the desired line in the Log or Source window,
modify it (delete the leading blank, for example), and press Enter. The input line
appears on the command line so you can further modify it as necessary. Press
Enter to issue the command.

When retrieving long or multiple Debug Tool commands, a full-screen pop-up
window is displayed, with the command as typed in so far. However, trailing blanks
on the last line are removed. The window can be expanded by placing the cursor
below the pop-up window and pressing Enter. See also [fRETRIEVE Command|
|(Full-Screen Mode)” on page 298|

Online Command Syntax Help

Command syntax help is available to you. That is, if you are uncertain about the
proper syntax or exact keywords required by a command, type a question mark (?)
on the command line and press Enter. For example, in COBOL, if you issue ?,
Debug Tool displays the output in the following format:

THE NEXT WORD MAY BE ONE OF:

H DISABLE INPUT QUIT

AT ENABLE LIST RETRIEVE
CALL END MONITOR RUN
CLEAR EVALUATE MOVE SCROLL
COMMENT FIND PANEL SET
COMPUTE GO PERFORM STEP
CURSOR GO TO PROCEDURE NAME TRIGGER
DECLARATION GOTO QUALIFY USE
DESCRIBE IF QUERY WINDOW

The above output sample is meant to illustrate a point and might not appear exactly
as shown.

Note: DECLARE (or DECLARATION) is not a command but a method of making
an interactive variable or tag declaration.

If you are in the process of entering a command and want to verify what the next
command element should be, you can enter as much of the command as you know
followed by a question mark. For example, let's assume you are issuing a form of
the SCROLL command (Full-Screen Mode only) and you want to know the possible
command elements, enter:

SCROLL ?

Chapter 12. Using Debug Tool Commands 199

Using Debug Tool Commands

Debug Tool displays the output in the following format:

The partially parsed command is:

SCROLL

The next word may be one of:
BOTTOM RIGHT

DOWN TO

LEFT TOP

NEXT uP

The COMMENT command followed by ? does not invoke the syntax help.

Common Syntax Elements

Block Name

Block_Spec

Several syntax elements are used in many Debug Tool commands. They are
described in this subsection. Some of the following syntax elements are generic
and do not include a syntax diagram.

A block_name identifies:

e A C function or a block statement
e A COBOL nested program contained within a complete COBOL program
e A PL/I block

The current block qualification can be changed using the SET QUALIFY BLOCK
command.

| For COBOL Only

Enclose the block name in double () or single (‘) quotes if it is case sensitive. If
the name is not inside quotes, Debug Tool will convert the name to upper case.

If a name contains an internal double quote, you should enclose the name in single
quotes. Similarly, if the name contains an internal single quote, you should enclose
the name in double quotes.

| End of For COBOL Only

You can only use block_name for blocks known in the current enclave.

A block_spec identifies a block in the program being debugged.

A\
A

»>— block_name v
—E%BLOCK—I |—:>—bZock_name—l
—Lcu_spec—: >—bl ock_nameJ—

200 Debug Tool/VSE VIR1 User's Guide and Reference

Using Debug Tool Commands

block_name
A valid block name; see [‘Block_Name.’
%BLOCK

Represents the currently qualified block. See [Table 4 on page 126|

cu_spec

A valid compile unit specification; see

You can only use block_name for blocks known in the current enclave.

Compile_Unit_Name
A compile_unit_name identifies:
e A C source file

e A COBOL program
e The external procedure name of a PL/I program.

| For COBOL Only

Enclose the compile unit name in double (") or single (') quotes if it is case
sensitive. If the name is not inside quotes, Debug Tool will convert the name to
upper case.

| End of For COBOL Only

| For PL/I only |

The compile unit name can optionally be enclosed in single quotes (').

| End of For PL/I only

If the compile unit name is not a valid identifier in the current programming
language, it must be entered as a character string constant in the current
programming language.

The current compile unit qualification can be changed using the SET QUALIFY CU
command.

CU_Spec

A cu_spec identifies a compile unit in the application being debugged. In PL/I, the
compile unit name is the same as the outer-most procedure name in the program.

[.
| 4.

A\
A

compile_unit_name
|—phase_spec—: :>J
%CU
%PROGRAM

phase_spec
A valid phase specification; see [‘Load_Spec” on page 203| If omitted, the
current phase qualification is used.

Chapter 12. Using Debug Tool Commands 201

Using Debug Tool Commands

Expression

Phase Name

compile_unit_name
A valid compile unit name; see FCompile_Unit_ Name.]

%CU
Represents the currently qualified compile unit. See[Table 4 on page 126}
%CU is equivalent to %PROGRAM.

%PROGRAM
Is equivalent to %CU. See [Table 4 on page 126|

You can only use cu_spec to specify compile units in an enclave that is currently
running. You can therefore only qualify variable names, function names, labels,
and statement_ids to blocks within compile units in the current enclave.

An expression is a combination of references (see [References” on page 203 for
more information) and operators that result in a value. For example, it can be a
single constant, a program, session, or Debug Tool variable, a built-in function
reference, or a combination of constants, variables, and built-in function references,
or operators and punctuation (such as parentheses).

Particular rules for forming an expression depend on the current programming
language setting and what release level of the language run-time library under
which Debug Tool is running. For example, if you upgrade your version of the HLL
compiler without upgrading your version of Debug Tool, certain application
programming interface inconsistencies might exist.

For more about expressions with each particular HLL, see:

[Chapter 9, “Using Debug Tool with C Programs” on page 138|

[‘Debug Tool Evaluation of COBOL Expressions” on page 172, or

[‘PL/I Expressions” on page 186}

You can only use expressions for variables contained in the current enclave.

A phase_name is the name of a sublibrary member that has been loaded by a
supported HLL load service.

For C, escape sequences in phase names that are specified as strings are not
processed if the string is part of a qualification statement.

If omitted from a name that allows it as a qualifier, the current phase qualification is
assumed. It can be changed using the SET QUALIFY LOAD command.

If two enclaves contain duplicate phases, references to compile units in the phases
will be ambiguous, and will be flagged as errors. However, if the compile unit is in
the currently executing phase, that phase is assumed and no check for ambiguity
will be performed. Therefore, for Debug Tool, phase names must be unique.

202 Debug Tool/VSE VIR1 User's Guide and Reference

Load_Spec

References

Statement _Id

Using Debug Tool Commands

A load_spec identifies a phase in the program being debugged.

»—[phase_name
%LOAD

\ 4
A

phase_name
A valid phase name; see [‘Phase_Name” on page 202| This can be specified
as a string constant in the current programming language, for example, a string
literal in C or a character literal in COBOL. If not specified as such, it must be
a valid identifier in the current programming language.

%LOAD
Represents the currently qualified phase. See [Table 4 on page 126}

A reference is a subset of an expression that resolves to an area of storage; that is,
a possible target of an assignment statement. For example, it can be a program,
session, or Debug Tool variable, an array or array element, or a structure or
structure element, and any of these can be pointer-qualified (in programming
languages that allow it). Any identifying name in a reference can be optionally
qualified by containing structure names and names of blocks where the item is
visible. It is optionally followed by subscript and substring modifiers, following the
rules of the current programming language.

The specification of a qualified reference includes all containing structures and
blocks as qualifiers, and can optionally begin with a phase name qualifier. For
example, when the current programming language setting is C,
phs::>cu:>proc:>strucl.struc2.array[23].

When the current programming language setting is C, the term /value is used in
place of reference.

COBOL uses structure qualification (IN or OF keyword) and can have optional
subscripting and substringing of the form:
array OF struc2 OF strucl(subscript)(starting position:length).

Particular rules for forming a reference depend on the current programming
language setting and what release level of the language run-time library Debug
Tool is running under. For example, if you upgrade your version of the HLL
compiler without upgrading your version of Debug Tool, certain application
programming interface inconsistencies might exist.

A statement_id identifies an executable statement in a manner appropriate for the
current programming language. This can be a statement number, sequence
number, or source line number. The statement id is an integer or integer.integer
(where the first integer is the line number and the second integer is the relative
statement number). For example, you can specify 3, 3.0, or 3.1 to signify the first
relative statement on line 3. C, COBOL, and PL/I allow multiple statements or
verbs within a source line.

Chapter 12. Using Debug Tool Commands 203

Using Debug Tool Commands

You can only use statement identifiers for statements that are known in the current
enclave.

Statement_Ild_Range and Stmt_Ild_Spec
A statement_id_range identifies a source statement id or range of statement ids.
Stmt_id_spec identifies a statement id specification.

A\
A

»—] stmt_id_spec |
L. statement_id—J
E’/OLINEi
SSTATEMENT—
stmt_id_spec:
|
|

B statement_id |
block_spec 0>

cu_spec
%LINE
%STATEMENT

block_spec
A valid block specification; see [Block_Spec” on page 200, The default is the
currently qualified block.

Note: For the currently supported programming languages, block qualification
is extraneous and will be ignored. This is because statement identifiers
are unique within a compile unit.

cu_spec
A valid compile unit specification; see ‘{CU_Spec” on page 201, The default is
the currently qualified compile unit.

statement _id
A valid statement identifier number; see [‘Statement_Id” on page 203}

%LINE
Represents the currently suspended source statement or line. See|Table 4 on
%LINE is equivalent to %STATEMENT.

%STATEMENT
Is equivalent to %LINE. See|[Table 4 on page 126}

Specifying a Range of Statements: A range of statements can be identified by
specifying a beginning and ending statement id, separated by a hyphen (-). When
the current programming language setting is COBOL, blanks are required around
the hyphen (-). Blanks are optional for C and PL/I. Both statement ids must be in
the same block, the second statement cannot occur before the first in the source
program, and they cannot be equal.

A single statement id is also an acceptable statement id range and is considered to
begin and end at the same statement. This consists of only one statement or verb
even in a multistatement line.

204 Debug Tool/VSE VIR1 User's Guide and Reference

Using Debug Tool Commands

Statement_Label
A statement _label identifies a statement using its source label. The specification of
a qualified statement label includes all containing compile unit names or block
names, and can optionally begin with a phase name qualifier. For example,
phs::>procl:>proc2:>blockl:>start.
The form of a label depends on the current programming language:
¢ In C, labels must be valid identifiers.

¢ In COBOL, labels must be valid identifiers and can be qualified with the section
name.

¢ |n PL/I, labels must be valid identifiers, which can include a label variable.

You can only use statement labels for labels that are known in the current enclave.

Chapter 12. Using Debug Tool Commands 205

ANALYZE Command

Chapter 13. Debug Tool Commands

This chapter describes the syntax and usage of each Debug Tool command.

See [‘How to Read the Syntax Diagrams” on page xvi for an explanation of the
syntax notation used to define the commands.

ANALYZE Command (PL/I)

The ANALYZE command displays the process of evaluating an expression and the
data attributes of any intermediate results. To display the results of the expression,
use the LIST command.

A\
A

»>—ANALYZE—EXPRESSION—(—expression—)—;

EXPRESSION
Requests that the accompanying expression be evaluated from the following
points of view:

e What are the attributes of each element during the evaluation of the
expression?

* What are the dimensions and bounds of the elements of the expression, if
applicable?

* What are the attributes of any intermediate results that will be created
during the processing of the expression?

expression
A valid Debug Tool PL/I expression.

Usage Notes:

e If SET SCREEN ON is in effect, and you want to issue ANALYZE
EXPRESSION for an expression in your program, you can bring the
expression from the Source window up to the command line by typing
over any character in the line that contains the expression. Then, edit
the command line to form the desired ANALYZE EXPRESSION
command.

e If SET WARNING ON is in effect, Debug Tool displays messages about
PL/I computational conditions that may be raised when evaluating the
expression. See ['SET WARNING (C and PL/I)” on page 325|for
specific information.

e Although the PL/I compiler supports the concatenation of GRAPHIC
strings, Debug Tool does not.

206 © Copyright IBM Corp. 1995, 1996

Assignment Command

Example:

This example is based on the following program segment:

DECLARE lo_point FIXED BINARY(31,5);

DECLARE hi_point FIXED BINARY(31,3);

DECLARE offset FIXED DECIMAL(12,2);

DECLARE percent CHARACTER(12);

To_point = 5.4; hi_point = 28.13; offset = -6.77;
percent = '18';

The following is an example of the information prepared by issuing
ANALYZE EXPRESSION. Specifically, the following shows the effect that
mixed precisions and scales have on intermediate and final results of an
expression:

ANALYZE EXPRESSION ((hi_point - To_point) + offset / percent)
>>> Expression Analysis <<<
(HI_POINT - LO POINT) + OFFSET / PERCENT
HI_POINT - LO_POINT
HI_POINT
FIXED BINARY(31,3) REAL
LO_POINT
FIXED BINARY(31,5) REAL
FIXED BINARY(31,5) REAL
OFFSET / PERCENT
OFFSET
FIXED DECIMAL(12,2) REAL
PERCENT
CHARACTER(12)
FIXED DECIMAL(15,5) REAL
FIXED BINARY(31,17) REAL

Assignment Command (PL/l)

The Assignment command assigns the value of an expression to a specified
reference.

\4
A

»>—reference—=—expression—;

reference
A valid Debug Tool PL/I reference. See[References” on page 203

expression
A valid Debug Tool PL/I expression.

Usage Notes:
e The PL/I repetition factor is not supported by Debug Tool.
For example, the following is not valid: rx = (16)'01'B;

» If Debug Tool was invoked because of a computational condition or an
attention interrupt, using an assignment to set a variable might not give
the expected results. This is because Debug Tool cannot determine
variable values within statements, only at statement boundaries.

e The PL/I assignment statement option BY NAME is not valid in the
Debug Tool.

Chapter 13. Debug Tool Commands 207

AT Command

Examples:
* Assign the value 6 to variable x.
X = 63
¢ Assign to the Debug Tool variable %GPR5 the address of name_table.
%GPR5 = ADDR (name_table);

* Assign to the prg_name variable the value of Debug Tool variable
%PROGRAM.

prg_name = %PROGRAM;

AT Command

The AT command defines a breakpoint or a set of breakpoints. By defining
breakpoints, you can temporarily suspend program execution and use Debug Tool
to perform other tasks. By specifying an AT-condition, you instruct Debug Tool
when to gain control. You can also specify in the AT command what action Debug
Tool should take when the AT-condition occurs.

A breakpoint for the specified AT-condition remains established until either another
AT command establishes a new action for the same AT-condition or a CLEAR
command removes the established breakpoint. An informational message is issued
when the first case occurs. Some breakpoints might become obsolete during a
debug session and will be cleared automatically by Debug Tool. See the usage
notes for more details.

The various forms of the AT command are summarized in Table 9.

Table 9 (Page 1 of 2). Summary of AT Commands

AT ALLOCATE gives Debug Tool control when storage for a named controlled
variable or aggregate is dynamically allocated by PL/I.
AT APPEARANCE gives Debug Tool control:
e For C and PL/I, when the specified compile unit is found in
storage

e For COBOL, the first time the specified compile unit is called

AT CALL gives Debug Tool control on an attempt to call the specified entry
point.

AT CHANGE gives Debug Tool control when either the specified variable value
or storage location is changed.

AT CURSOR defines a statement breakpoint by cursor pointing.

AT DELETE gives Debug Tool control when a phase is deleted.

AT ENTRY/EXIT defines a breakpoint at the specified entry point or exit.

AT GLOBAL gives Debug Tool control for every instance of the specified
AT-condition.

AT LABEL gives Debug Tool control at the specified statement label.

AT LINE gives Debug Tool control at the specified line.

AT LOAD gives Debug Tool control when the specified phase is loaded.

AT OCCURRENCE gives Debug Tool control on a language or LE/VSE condition or
exception.

208 Debug Tool/VSE VIR1 User's Guide and Reference

Every_Clause

AT Command

Table 9 (Page 2 of 2). Summary of AT Commands

AT PATH

gives Debug Tool control at a path point.

AT Prefix

defines a statement breakpoint via the Source window prefix
area.

AT STATEMENT

gives Debug Tool control at the specified statement.

AT TERMINATION

gives Debug Tool control when the application program is
terminated.

Usage Notes:

» To set breakpoints at specific locations in a program, Debug Tool
depends on that program being loaded into storage. If you issue an AT
command for a specific ENTRY, EXIT, LABEL, LINE, or STATEMENT
breakpoint and the program is not known by Debug Tool, a warning
message is issued and the breakpoint is not set.

e To set a global breakpoint, you can specify an asterisk (*) with the AT
command or you can specify an AT GLOBAL command. For example,
if you want to set a global AT ENTRY breakpoint, specify:

AT ENTRY =*;

or

AT GLOBAL ENTRY;

e AT CHANGE, AT ENTRY, AT EXIT, AT LABEL, AT LINE, or AT
STATEMENT breakpoints (when entered for a specific block, label, line,
or statement) are automatically cleared when the containing compile
unit is removed from storage.

e AT CHANGE breakpoints are automatically cleared when the containing
blocks are no longer active or if the relevant variables are in dynamic
storage that is freed by a language construct in the program (for
example, a C call to free()).

e Clearing of a breakpoint is independent of whether the breakpoint is
ENABLEd or DISABLEGA.

e When multiple AT conditions are raised at the same statement or line,
Debug Tool processes them in a predetermined order.

Most forms of the AT command contain an optional every_clause that controls
whether the specified action is taken based on the number of times a situation has
occurred. For example, you might want an action to occur only every 10th time a

breakpoint is reached.

The syntax for every_clause is:

v

] l—_l |—FROM—integer‘—J |—TO—integer—J
LLEVERYiinteger

EVERY

Chapter 13. Debug Tool Commands 209

AT Command

EVERY integer
Specifies how frequently the breakpoint is taken. For example, EVERY 5
means that Debug Tool is invoked every fifth time the AT-condition is met. The
default is EVERY 1.

FROM integer
Specifies when Debug Tool invocations are to begin. For example, FROM 8
means that Debug Tool is not invoked until the eighth time the AT-condition is
met. If the FROM value is not specified, its value is equal to the EVERY value.

TO integer
Specifies when Debug Tool invocations are to end. For example, TO 20
means that after the 20th time this AT-condition is met, it should no longer
invoke Debug Tool. If the TO value is not specified, the every_clause
continues indefinitely.

Usage Notes:

e FROM integer cannot exceed TO integer and all integers must be = 1.
e EVERY by itself is the same as EVERY 1 FROM 1.
e The EVERY, FROM, and TO clauses can be specified in any order.

Examples:

e Break every third time statement 50 is reached, beginning with the 48th
time and ending after the 59th time. The breakpoint action is performed
the 48th, 51st, 54th, and 57th time statement 50 is reached.

AT EVERY 3 FROM 48 TO 59 STATEMENT 50;

» At the fifth change of structure field member of the structure named
mystruct, print a message saying that it has changed and list its new
value. In addition, clear the CHANGE breakpoint. The current
programming language setting is C.

AT FROM 5 CHANGE mystruct.member {
LIST ("mystruct.member has changed.

It is now", mystruct.member);
CLEAR AT CHANGE mystruct.member;

}

AT ALLOCATE (PL/)

AT ALLOCATE gives Debug Tool control when storage for a named controlled
variable or aggregate is dynamically allocated by PL/I. When the AT ALLOCATE
breakpoint occurs, the allocated storage has not yet been initialized; initialization, if
any, occurs when control is returned to the program.

»»—AT B 7 ALLOCATE identifier command—<
every_clause

(—Ezdentifier]—)—

every_clause
As described under fEvery_Clause” on page 209]

identifier
The name of a PL/I controlled variable whose allocation causes an invocation
of Debug Tool. If the variable is the name of a structure, only the major
structure name can be specified.

210 Debug Tool/VSE VIR1 User's Guide and Reference

AT Command

* Sets a breakpoint at every ALLOCATE.

command
A valid Debug Tool command.

Examples:

e When the major structure area_name is allocated, display the address of
the storage that was obtained.

AT ALLOCATE area_name LIST ADDR (area_name);

 List the changes to temp where the storage for temp has been allocated.
DECLARE temp CHAR(80) CONTROLLED INITIAL('abc');

AT ALLOCATE temp;

BEGIN;
AT CHANGE temp;
BEGIN;
LIST (temp);
GO;
END;
GO;
END;
GO;
temp = 'The first time.';
temp = 'The second time.';
temp = 'The second time.';

When temp is allocated the value of temp has not yet been initialized.
When it is initialized to 'abc' by the INITIAL phrase, the first AT
CHANGE is recognized and 'abc' is listed. The three assignments to
temp cause the value to be set again but the third assignment doesn't
change the value. This example results in one ALLOCATE breakpoint
and three CHANGE breakpoints.

AT APPEARANCE

Gives Debug Tool control when the specified compile unit is found in storage. This
is usually the result of a new phase being loaded. However, for phases with the
main compile unit in COBOL, the breakpoint does not occur until the compile unit is
first entered after being loaded.

»—AT

APPEARANCE——cu_spec—————command——»<

every_clause
As described under FEvery_Clause” on page 209

cu_spec
A valid compile unit specification; see [‘CU_Spec” on page 201}

* Sets a breakpoint at every APPEARANCE of any compile unit.

command
A valid Debug Tool command.

Chapter 13. Debug Tool Commands 211

AT Command

212

Usage Notes:

In a CICS environment, if an AT APPEARANCE breakpoint is set for a
program that is loaded via XCTL or LINK, the breakpoint will not be
raised.

For a CICS application, this breakpoint is cleared at the end of the last
process in the application. For a non-CICS application, it is cleared at
the end of a process.

If this breakpoint is set in a parent enclave it can be triggered and
operated on with breakpoint commands while the application is in a
child enclave.

If the compile unit is qualified with a phase name, the AT
APPEARANCE breakpoint will only be recognized for the compile unit
that is contained in the specified phase. For example, if a compile unit
cux which is in phase phasey appears, the breakpoint AT APPEARANCE
phasex: :>cux will not be triggered.

If the compile unit is not qualified with a phase name, the current phase
qualification is used.

Debug Tool gains control when the specified compile unit is first
recognized by Debug Tool. This can occur when a program is reached
that contains a reference to that compile unit. This occurs late enough
that the program can be operated on (setting breakpoints, for example),
but early enough that the program has not yet been executed. In
addition, for C, static variables can also be referenced.

AT APPEARANCE is helpful when setting breakpoints in unknown
compile units. You can set breakpoints at locations currently unknown
to Debug Tool by using the proper qualification and embedding the
breakpoints in the command list associated with an APPEARANCE
breakpoint. However, there can be only one APPEARANCE breakpoint
set at any time for a given compile unit and you must include all
breakpoints for that unknown compile unit in a single APPEARANCE
breakpoint.

For C, AT APPEARANCE is not triggered for compile units that reside
in a loaded phase since the compile units are known at the time of the
load.

For C and PL/I, an APPEARANCE breakpoint is triggered when Debug
Tool finds the specified compile unit in storage. To be triggered,
however, the APPEARANCE breakpoint must be set before the compile
unit is loaded.

At the time the APPEARANCE breakpoint is triggered, the compile unit
you are monitoring has not become the currently-running compile unit.

The compile unit that is current when the new compile unit appears in

storage, triggering the APPEARANCE breakpoint, remains the current

compile unit until execution passes to the new compile unit.

For COBOL, an APPEARANCE breakpoint is triggered when Debug
Tool finds the specified compile unit in storage. To be triggered,
however, the APPEARANCE breakpoint must be set before the compile
unit is called.

Debug Tool/VSE V1R1 User's Guide and Reference

AT CALL

AT Command

At the time the APPEARANCE breakpoint is triggered, the compile unit
you are monitoring has not become the currently-running compile unit.

The compile unit that is current when the new compile unit appears in

storage, triggering the APPEARANCE breakpoint, remains the current

compile unit until execution passes to the new compile unit.

Examples:

e Establish an entry breakpoint when compile unit cu is found in storage.
The current programming language setting is C.

AT APPEARANCE cu {
AT ENTRY a;
GO;
}

e Defer the AT EXIT and AT LABEL breakpoints until compile unit cuy is
first entered after being loaded into storage. The current programming
language setting is COBOL.

AT APPEARANCE cuy PERFORM
AT EXIT cuy:>blocky LIST ('Exiting blocky.');
AT LABEL cuy:>Tabl QUERY LOCATION;
END-PERFORM;

If cuy is later deleted from storage, the breakpoints that are dependent
on cuy are automatically cleared. However, if cuy is then loaded again,
the APPEARANCE breakpoint for cuy is triggered and the AT EXIT and
AT LABEL breakpoints are redefined.

Gives Debug Tool control when the application code attempts to call the specified
entry point. Using CALL breakpoints, you can simulate the execution of unfinished
subroutines, create dummy or stub programs, or set variables to mimic resultant
values, allowing you to test sections of code before the whole is complete.

»»—AT B] CALL entry_name command———»><
every_clause

(—[éntry_name]—)—

every_clause
As described under [Every_Clause” on page 209|

entry_name
A valid external entry point name constant or zero (0); however, 0 can only be
specified if the current programming language setting is C or PL/I.

* Sets a breakpoint at every CALL of any entry point.

command
A valid Debug Tool command.

Chapter 13. Debug Tool Commands 213

AT Command

Usage Notes:

e AT CALL intercepts the call itself, not the subroutine entry point. C,
COBOL, and PL/I programs compiled with the compile-time
TEST(PATH) option identify call targets even if they are unresolved.
For more information on the compile-time TEST option, see:

FCoinIing a C Program with the Compile-Time TEST Option” on|
Eaée 12|,

[‘Compiling a COBOL Program with the Compile-Time TEST Option’]
[on page 16} or

“Compiling a PL/I Program with the Compile-Time TEST Option” on|

page 1 9|.

e A breakpoint set with AT CALL for a call to a C, or PL/I built-in function
is never triggered.

e CALL statements within an INITIAL attribute on a PL/I variable
declaration will not trigger AT CALL breakpoints.

e AT CALL generally intercepts only calls to entry points known to Debug
Tool at compile time. Calls to entry variables are not intercepted,
except when the current programming language setting is either C or
COBOL (compiled with the run-time TEST option).

e AT CALL 0 intercepts calls to unresolved entry points when the current
programming language setting is C or PL/I (compiled with the run-time
TEST option).

e AT CALL allows you to intercept or bypass the target program by using
GO BYPASS or GOTO. If resumed by a normal GO or STEP,
execution resumes by performing the call.

« If this breakpoint is set in a parent enclave it can be triggered and
operated on with breakpoint commands while the application is in a
child enclave.

e For a CICS application on Debug Tool, this breakpoint is cleared at the
end of the last process in the application. For a non-CICS application
on Debug Tool, it is cleared at the end of a process.

e For COBOL, remember to enclose the entry_name in double () or
single () quotes if it is case sensitive.

e To be able to set CALL breakpoints in C, you must compile your
program with either the PATH or ALL suboption of the compile-time
TEST option. The default is PATH.

« If your C program has unresolved entry points or entry variables, issue
AT CALL 0.

e To be able to set CALL breakpoints in COBOL, you must compile your
program with either the PATH or ALL suboption of the compile-time
TEST option.

AT CALL 0 is not supported for use with COBOL programs. However,
COBOL is able to identify CALL targets even if they are unresolved,
and also identify entry variables and intercept them. Therefore, not all
external references need be resolved for COBOL programs.

214 Debug Tool/VSE VIR1 User's Guide and Reference

AT Command

e To be able to set CALL breakpoints in PL/l, you must compile your
program with either the PATH or ALL suboptions of the compile-time
TEST option. AT CALL 0 is supported and is invoked for unresolved
external references.

Examples:

e |Intercept all calls and request input from the terminal.
AT CALL =*;

* [f the program invokes function badsubr, intercept the call, set variable
varbl to 50, and then bypass the target function. The current
programming language setting is C.

AT CALL badsubr {
varbl = 50;
GO BYPASS;

}

AT CHANGE

Gives Debug Tool control when either the application program or Debug Tool
command changes the specified variable value or storage location.

»»—AT CHANGE

v

l—e ver y_clauseJ

reference N command———»<
%STORAGE— (—uaddress B 7)
,—length

(—{[’reference)_J|)

%STORAGE—(—address B N
,—length

every_clause
As described under FEvery_Clause” on page 209

reference
A valid Debug Tool reference in the current programming language; see
[‘References” on page 203

%STORAGE
A built-in function that provides an alternative way to select an AT CHANGE
subject.

address
The starting address of storage to be watched for changes. This must be a
hex constant:

e OxinC
e Hin COBOL (using either double (") or single (') quotes)
e A PX constant in PL/I.

length
The number of bytes of storage being watched for changes. This must be
a positive integer constant. The default value is 1.

Chapter 13. Debug Tool Commands 215

AT Command

command

A valid Debug Tool command.

Usage Notes:

Data is watched only in storage; hence a value that is being kept in a
register due to compiler optimization cannot be watched. In addition,
the Debug Tool variables %GPRn, %FPRn, %LPRn, and %EPRn
cannot be watched.

Only entire bytes are watched; bits or bit strings within a byte cannot be
singled out.

Since AT CHANGE breakpoints are identified by storage address and
length, it is not possible to have two AT CHANGE breakpoints for the
same area (address and length) of storage. That is, an AT CHANGE
command replaces a previous AT CHANGE command if the storage
address and length are the same. However, any other overlap is
ignored and the breakpoints are considered to be for two separate
variables. For example, if the storage address is the same, but the
length is different, the AT CHANGE command will not replace the
previous AT CHANGE.

When more than one AT CHANGE breakpoint is triggered at a time, AT
CHANGE breakpoints will be triggered in the order that they were
originally set. However, if the triggering of one breakpoint causes a
variable watched by a different breakpoint to change, the ordering of the
triggers will not necessarily be according to when they were originally
entered. For example:

AT CHANGE y LIST y;

AT CHANGE x y = 4;

GO;

If the next statement to be executed in your program causes the value
of x to change, the CHANGE x breakpoint will be triggered when Debug
Tool gains control. Processing of CHANGE x causes the value of y to
change. If you type "GO;" after being informed that CHANGE x was
triggered, Debug Tool will trigger the CHANGE y breakpoint (before
returning control to your program).

In this case, the CHANGE y breakpoint was set first, but the CHANGE x
breakpoint was triggered first (it caused the CHANGE y breakpoint to be
triggered).

%STORAGE is a Debug Tool built-in function that is available only in
the CHANGE breakpoint commands.

For a CICS application, the CHANGE %STORAGE breakpoint is
cleared at the end of the last process in the application. For a
non-CICS application, it is cleared at the end of a process.

The referenced variables must exist when the AT CHANGE breakpoint
is defined. One way to ensure this is to embed the AT CHANGE in an
AT ENTRY.

An AT CHANGE breakpoint gets removed automatically when the
specified variable is no longer defined. AT CHANGEs for C static
variables are removed when the phase defining the variable is removed

216 Debug Tool/VSE VIR1 User's Guide and Reference

AT Command

from storage. For C storage that is allocated using malloc() or
calloc(), this occurs when the dynamic storage is freed using free().

e Changes are not detected immediately, but only at the completion of
any command that has the potential of changing storage or variable
values. If you issue a Debug Tool command that modifies a variable
being watched, the CHANGE condition is raised immediately. You can
force more or less frequent checking by using the SET CHANGE
command.

e C AT CHANGE breakpoint requirements

The variable must be an Tvalue or an array.

The variable must be declared in an active block if the variable is a
parameter or has a storage class of auto.

If you specify the address of the storage containing the variable, it
must be specified with a hexadecimal constant.

A CHANGE breakpoint defined for a static variable is automatically
removed when the file in which the variable was declared is no
longer active. A CHANGE breakpoint defined for an external
variable is automatically removed when the phase where the
variable was declared is no longer active.

e COBOL AT CHANGE breakpoint requirements

AT CHANGE using a storage address should not reference a data
item that follows a variable-size element or subgroup within a group.
COBOL dynamically remaps the group when a variable-size
element changes size.

If you specify the address of the storage containing the variable, it
must be with an H constant, delimited by either quotation marks or
apostrophes. The H constant can only be used where an address
or POINTER variable can be used. The COBOL hexadecimal
notations for nonnumeric literals should be used for all other
situations. For details on the H constant, see[“Using Constants in|
|[Expressions” on page 173

Be careful when examining a variable whose allocated storage
follows that of a variable-size element. COBOL dynamically remaps
the storage for the element any time it changes size. This could
alter the address of the variable you want to examine.

You cannot set a CHANGE breakpoint for a COBOL file record
before the file is opened.

The variable, when in the local storage section, must be declared in
an active block.

e PL/I AT CHANGE breakpoint requirements

CHANGE breakpoint is removed for based or controlled variables
when they are FREEd and for parameters and AUTOMATIC
variables when the block in which they are declared is no longer
active.

CHANGE monitors only structures with single scalar elements.
Structures containing more than one scalar element are not
supported.

Chapter 13. Debug Tool Commands 217

AT Command

Examples:

— The variable must be a valid reference for the current block.

— The breakpoint is automatically removed after the referenced
variable ceases to exist. The CHANGE breakpoint is removed for
based or controlled variables when they are FREEd and for
parameters and AUTOMATIC variables when the block in which
they were declared is no longer active.

— A CHANGE breakpoint monitors the storage allocated to the current
generation of a controlled variable. If you subsequently allocate
new generations, they are not automatically monitored.

— If you specify the address of storage containing the variable, you
must do so with a PX constant, delimited by single quotation marks.
The PX constant can only be used where an address or pointer
variable can be used.

Identify the current location each time variable varb11 or varb12 is found
to have a changed value. The current programming language setting is
COBOL.
AT CHANGE (varbll, varb12) PERFORM

QUERY LOCATION;

GO;
END-PERFORM;
When storage at the hex address 22222 changes, print a message in
the log. Eight bytes of storage are to be watched. The current
programming language setting is C.
AT CHANGE %STORAGE (0x00022222, 8)

LIST "Storage has changed at hex address 22222";

Set two breakpoints when storage at the hex address 1000 changes.
The variable x is defined at hex address 1000 and is 20 bytes in length.
In the first breakpoint, 20 bytes of storage are to be watched. In the
second breakpoint, 50 bytes of storage are to be watched. The current
programming language setting is C.

AT CHANGE %STORAGE (0x00001000, 20) /* Breakpoint 1 set */

AT CHANGE %STORAGE (0x00001000, 50) /* Breakpoint 2 set =/

AT CHANGE x /* Replaces breakpoint 1, since x is at =/
/* hex address 1000 and is 20 bytes long */

AT CURSOR (Full-Screen Mode)

Provides a

cursor controlled method for setting a statement breakpoint. It is most

useful when assigned to a PF key.

RSOR
’—CU SO—l

A\
A

»»—AT
l—TOGGLEJ

TOGGLE

Specifies that if the cursor-selected statement already has an associated
statement breakpoint then the breakpoint is removed rather than replaced.

218 Debug Tool/VSE VIR1 User's Guide and Reference

AT DELETE

AT Command

Usage Notes:

e AT CURSOR does not allow specification of an every_clause or a
command, and must not have a semicolon coded.

e The cursor must be in the Source window and positioned on a line
where an executable statement begins. An AT STATEMENT command
for the first executable statement in the line is generated and executed
(or cleared if one is already defined and TOGGLE is specified).

Example:

Define a PF key to toggle the breakpoint setting at the cursor position.
SET PF10 = AT TOGGLE CURSOR;

Gives Debug Tool control when a phase is removed from storage by an LE/VSE
delete service, such as on completion of a successful C release(), COBOL
CANCEL, or PL/I RELEASE.

»—AT B N DELETE load_spec—————command————— >«
every_clause k

(—Eioad_specj—)—

every_clause
As described under [‘Every Clause” on page 209|

load_spec

A valid phase specification; see [Load_Spec” on page 203

* Sets a breakpoint at every DELETE of any phase.

command
A valid Debug Tool command.

Usage Notes:

e Debug Tool gains control for deletes that are affected by the LE/VSE
delete service. If a phase is deleted using the VSE CDDELETE mactro,
Debug Tool is not informed. This can cause errors if Debug Tool
attempts to operate on any part of the deleted phase.

e AT DELETE cannot specify the initial phase.

« If this breakpoint is set in a parent enclave it can be triggered and
operated on with breakpoint commands while the application is in a
child enclave.

e For a CICS application, this breakpoint is cleared at the end of the last
process in the application. For a non-CICS application, it is cleared at
the end of a process.

Chapter 13. Debug Tool Commands 219

AT Command

Examples:

e Each time a phase is deleted, request input from the terminal.
AT DELETE *;

e Stop watching variable varl:>x when phase myphs is deleted.
AT DELETE myphs CLEAR AT CHANGE (varl:>x);

AT ENTRY/EXIT

Defines a breakpoint at the specified entry point or exit in the specified block.

»»—AT ENTRY block_spec——————command—»<
l—e very_clauseJ L al

EXIT ,
(—gb l ock_specj—) —
*-

every_clause

As described under fEvery_Clause” on page 209

block_spec
A valid block specification; see [‘Block_Spec” on page 200|

* Sets a breakpoint at every ENTRY or EXIT of any block.

command
A valid Debug Tool command.

Usage Notes:

e AT ENTRY/EXIT can only be set for programs that are currently fetched
or loaded. If you want to set an entry or exit breakpoint for a currently
unknown compile unit, see ['AT APPEARANCE” on page 211].

e An ENTRY or EXIT breakpoint set for a compile unit that becomes
nonactive (one that is not in the current enclave), is suspended until the
compile unit becomes active. An ENTRY/EXIT breakpoint set for a
compile unit that is deleted from storage is suspended until the compile
unit is restored. A suspended breakpoint cannot be triggered or
operated on with breakpoint commands.

e For a CICS application running with Debug Tool, this breakpoint is
cleared at the end of the last process in the application. For a
non-CICS application, it is cleared at the end of a process.

e Both ENTRY and EXIT breakpoints for blocks in a fetched or loaded
program are removed when that program is released.

Examples:

e At the entry of program subrx, initialize variable ix and continue
program execution. The current programming language setting is
COBOL.

AT ENTRY subrx PERFORM
SET ix TO 5;
GO;

END-PERFORM;

220 Debug Tool/VSE VIR1 User's Guide and Reference

AT GLOBAL

AT Command

e At exit of main print a message and trigger the SIGUSR1 condition. The
current programming language setting is C.
AT EXIT main {
puts("At exit of the program");
TRIGGER SIGUSRI1;
GO;
}

Gives Debug Tool control for every instance of the specified AT-condition. These
breakpoints are independent of their nonglobal counterparts (except for AT PATH,
which is identical to AT GLOBAL PATH). Global breakpoints are always performed
before their specific counterparts.

»»—AT |_ N GLOBAL ALLOCATE———command

every_clause —APPEARANCE—
—CALL————
—DELETE——
—ENTRY
—EXIT———
—LABEL
—LINE——
—LOAD——
—PATH———
—STATEMENT—

\4
A

every_clause
As described under [Every Clause” on page 209|

command
A valid Debug Tool command.

You should use GLOBAL breakpoints where you don't have specific information of
where to set your breakpoint. For example, you want to halt at entry to block
Abcdefg_Unknwn but cannot remember the name, you can issue AT GLOBAL ENTRY
and Debug Tool will halt every time a block is being entered. If you want to halt at
every function call, you can issue AT GLOBAL CALL.

Usage Notes:

* To set a global breakpoint, you can specify an asterisk (*) with the AT
command or you can specify an AT GLOBAL command.

e Although you can define GLOBAL breakpoints to coexist with singular
breakpoints of the same type at the same location or event, COBOL
does not allow you to define two or more single breakpoints of the
same type for the same location or event. The last breakpoint you
define replaces any previous breakpoint.

Chapter 13. Debug Tool Commands 221

AT Command

AT LABEL

Examples:

If you want to set a global AT ENTRY breakpoint, specify:

AT ENTRY =*;
or
AT GLOBAL ENTRY;

At every statement or line, display a message identifying the statement
or line. The current programming language setting is COBOL.

AT GLOBAL STATEMENT LIST ('At Statement:', %STATEMENT);

If you enter (for COBOL):

AT EXIT tablel PERFORM
LIST TITLED (age, pay);
GO;

END-PERFORM;

then enter:

AT EXIT tablel PERFORM

LIST TITLED (benefits, scale);

GO;

END-PERFORM;

only benefits and scale are listed when your program reaches the exit
point of block tabTlel. The second AT EXIT replaces the first because
the breakpoints are defined for the same location. However, if you
define the following GLOBAL breakpoint:

AT GLOBAL EXIT PERFORM

LIST TITLED (benefits, scale);

GO;

END-PERFORM;

in conjunction with the first EXIT breakpoint, when your program
reaches the exit from tablel, all four variables (age, pay, benefits, and
scale) are listed with their values, because the GLOBAL EXIT
breakpoint can coexist with the EXIT breakpoint set for tablel.

Gives Debug Tool control when execution has reached the specified statement

label or group of labels. For C and PL/I, if there are multiple labels associated with

a single statement, you can specify several labels and Debug Tool gains control at
each label. For COBOL, AT LABEL lets you specify several labels, but for any
group of labels that are associated with a single statement, Debug Tool gains
control for that statement only once.

»»—AT L N LABEL statement_labe | ——— —command—»<
every_clause k

(—E;tatemen t_labe Z—J—)—
*

every_clause

As described under[‘Every Clause” on page 209

statement_label

a valid source label constant; see [‘Statement_Label” on page 205|

222 Debug Tool/VSE VIR1 User's Guide and Reference

*

command
A valid Debug Tool command.

AT Command

Sets a breakpoint at every LABEL.

Usage Notes:

e For COBOL statement_label can have either of the following forms:

— hame

This form can be used in COBOL for reference to a section name
or for a COBOL paragraph name that is not within a section or is in
only one section of the block.

— namet1 OF name2 or name1 IN name2

This form must be used for any reference to a COBOL paragraph
(name1) that is within a section (name?2), if the same name also
exists in other sections in the same block. You can specify either
OF or IN, but Debug Tool always uses OF for output.

Either form can be prefixed with the usual block, compile unit, and
phase name qualifiers.

For C or PL/I, you can set a LABEL breakpoint at each label located at
a statement. This is the only circumstance where you can set more
than one breakpoint at the same location.

A LABEL breakpoint set for a nonactive compile unit (one that is not in
the current enclave), is suspended until the compile unit becomes
active. A LABEL breakpoint set for a compile unit that is deleted from
storage is suspended until the compile unit is restored. A suspended
breakpoint cannot be triggered or operated on with breakpoint
commands.

For a CICS application, this breakpoint is cleared at the end of the last
process in the application. For a non-CICS application, it is cleared at
the end of a process.

You cannot set LABEL breakpoints at, for example, PL/I label variables.

LABEL breakpoints for label constants in a fetched or loaded phase are
removed when that program is released.

To be able to set LABEL breakpoints in C or PL/I, you must compile
your program with either the PATH and SYM suboptions or the ALL
suboption of the compile-time TEST option.

You can set breakpoints for more than one label at the same location.
Debug Tool is entered for each specified label.

To be able to set LABEL breakpoints in COBOL, you must compile your
program with either the STMT, PATH, or ALL suboption and the SYM
suboption of the compile-time TEST option.

When defining specific LABEL breakpoints Debug Tool sets a
breakpoint for each label specified, unless there are several labels on
the same statement. In this case, only the last LABEL breakpoint
defined is set.

Chapter 13. Debug Tool Commands 223

AT Command

AT LINE

AT LOAD

Examples:
» Set a breakpoint at label create in the currently qualified block.
AT LABEL create;

e At program label para OF sectl display variable names x and y and
their values, and continue program execution. The current
programming language setting is COBOL.

AT LABEL para OF sectl PERFORM
LIST TITLED (x, y);
GO;

END-PERFORM;

e Set a breakpoint at labels Tabell and 1abel2, even though both labels
are associated to the same statement. The current programming
language setting is C.

AT LABEL Tabell LIST 'Stopped at labell'; /* Labell is first =/
AT LABEL Tabel2 LIST 'Stopped at label2'; /* Label2 is second */

See ‘AT STATEMENT” on page 230]

Gives Debug Tool control when the specified phase is brought into storage. For
example, on completion of a successful C fetch(), a PL/I FETCH, or during a
COBOL dynamic CALL. Once the breakpoint is raised for the specified phase, it is
not raised again unless either the phase is released and fetched again or another
phase with the specified name is fetched.

You can set LOAD breakpoints regardless of what compile-time options are in
effect.

»»—AT B 7 LOAD load_spec—————command———— >«
every_clause l:

(—gzoad_specj—)—

every_clause
As described under [‘Every Clause” on page 209|

load_spec

A valid phase specification; see [Load_Spec” on page 203

* Sets a breakpoint at every LOAD of any phase.

command
A valid Debug Tool command.

224 Debug Tool/VSE VIR1 User's Guide and Reference

AT Command

Usage Notes:

Examples:

AT OCCURRENCE

Debug Tool gains control for loads that are affected by the LE/VSE load
service. If a phase is loaded using the VSE CDLOAD macro or EXEC
CICS LOAD, Debug Tool is not informed.

AT LOAD can be used to detect the loading of specific language library
phases; however, the loading of language library phases does not
trigger an AT GLOBAL LOAD or AT LOAD ~.

AT LOAD cannot specify the initial phase because it is already loaded
when Debug Tool is invoked.

A LOAD breakpoint is triggered when a new enclave is entered.

If this breakpoint is set in a parent enclave it can be triggered and
operated on with breakpoint commands while the application is in a
child enclave.

For a CICS application executing with Debug Tool, this breakpoint is
cleared at the end of the last process in the application. For a
non-CICS application, it is cleared at the end of a process.

At the triggering of a LOAD breakpoint for C and PL/l, Debug Tool has
enough information about the loaded phase to set breakpoints and
examine variables of static and extern storage classes.

At the triggering of a LOAD breakpoint for COBOL, Debug Tool does
not have enough information about the loaded phase to set breakpoints
in blocks contained within the phase. At the triggering of an
APPEARANCE breakpoint, however, you can set such breakpoints.

Print a message when phase myphs is loaded. The current
programming language setting is either C or COBOL.

AT LOAD myphs LIST ("Phase myphs has been loaded");

Establish an entry breakpoint when phase a is fetched and then resume
execution. The current programming language setting is C.

AT LOAD a {
AT ENTRY a;
GO;

1

Gives Debug Tool control on a language or LE/VSE condition or exception.

»»—AT B 7 OCCURRENCE condition command—»<
every_clause J

(—Eéond it ionj—)

every_clause
As described under [‘Every Clause” on page 209|

condition

A valid condition or exception. This can be either an LE/VSE symbolic
feedback code, or a language-oriented keyword or code, depending on the
current programming language setting.

Chapter 13. Debug Tool Commands 225

AT Command

Following are the C condition constants; they must be uppercase and not

abbreviated:

SIGABND SIGINT SIGTERM
SIGABRT SIGIOERR SIGUSR1
SIGFPE SIGSEGV SIGUSR2
SIGILL

PL/I condition constants can be used as well. See[‘'ON Command (PL/l)” on|
for information about valid condition names.

There are no COBOL condition constants. Instead, an LE/VSE symbolic
feedback code must be used, for example, CEE347. For symbolic feedback
codes for LE/VSE callable services, see LE/VSE Programming Reference.

command
A valid Debug Tool command.

Program conditions and condition handling vary from language to language. The
methods the OCCURRENCE breakpoint uses to adapt to each language are
described below.

For C:

When a C or LE/VSE condition occurs during your session, the following series of
events takes place:

1. Debug Tool is invoked before any C signal handler.

2. If you set an OCCURRENCE breakpoint for that condition, Debug Tool
processes that breakpoint and executes any commands you have specified. If
you did not set an OCCURRENCE breakpoint for that condition, and:

 If the current test-level setting is ALL, Debug Tool prompts you for
commands or reads them from a commands file.

 If the current test-level setting is ERROR, and the condition has an error
severity level (that is, anything but SIGUSR1, SIGUSR2, SIGINT, or
SIGTERM), Debug Tool gets commands by prompting you or by reading
from a commands file.

 If the current test-level setting is NONE, Debug Tool ignores the condition
and returns control to the program.

You can set OCCURRENCE breakpoints for equivalent C signals and LE/VSE
conditions. For example, you can set AT OCCURRENCE CEE345 and AT
OCCURRENCE SIGSEGV during the same debugging session. Both indicate an
addressing exception and, if you set both breakpoints, no error occurs. However, if
you set OCCURRENCE breakpoints for a condition using both its C and LE/VSE
designations, the LE/VSE breakpoint is the only breakpoint triggered. Any
command list associated with the C condition is not executed[Table 19 o]

lists the LE/VSE conditions and their C equivalents. Also see LE/VSE
Programming Guide.

You can use OCCURRENCE breakpoints to control your program's response to
errors.

226 Debug Tool/VSE VIR1 User's Guide and Reference

AT Command

Usage Notes:

* If the application program also has established an exception handler for
the condition then that handler is entered when Debug Tool releases
control, unless return is by use of GO BYPASS or GOTO or a specific
statement.

¢ OCCURRENCE breakpoints for COBOL IGZ conditions can only be set
after a COBOL run-time phase has been initialized.

e For C and PL/I, certain LE/VSE conditions map to C SIGxxx values and
PL/I condition constants. It is possible to enter two AT OCCURRENCE
breakpoints for the same condition. For example, one could be entered
with the LE/VSE condition name and the other could be entered with
the C SIGxxx condition constant. In this case, the AT OCCURRENCE
breakpoint for the LE/VSE condition name is triggered and the AT
OCCURRENCE breakpoint for the C condition constant is not.
However, if an AT OCCURRENCE breakpoint for the LE/VSE condition
name is not defined, the corresponding mapped C or PL/I condition
constant is triggered.

 |f this breakpoint is set in a parent enclave it can be triggered and
operated on with breakpoint commands while the application is in a
child enclave.

e For a CICS application, this breakpoint is cleared at the end of the last
process in the application. For a non-CICS application, it is cleared at
the end of a process.

e For COBOL, Debug Tool detects LE/VSE conditions. If an LE/VSE
condition occurs during your session, the following series of events
takes place:

1. Debug Tool is invoked before any condition handler.

2. If you set an OCCURRENCE breakpoint for that condition, Debug
Tool processes that breakpoint and executes any commands you
have specified. If you have not set an OCCURRENCE breakpoint
for that condition, and:

— If the current test-level setting is ALL, Debug Tool prompts you
for commands or reads them from a commands file.

— If the current test-level setting is ERROR, and the condition has
a severity level of 2 or higher, Debug Tool gets commands by
prompting you or by reading from a commands file.

— If the current test-level setting is NONE, Debug Tool ignores the
condition and returns control to the program.

You can use OCCURRENCE breakpoints to control your program's
response to errors.

See LE/VSE Debugging Guide and Run-Time Messages for a list of
LE/VSE conditions.

e For PL/I, Debug Tool detects LE/VSE and PL/I conditions. If a
condition occurs, Debug Tool is invoked before any condition handler.
If you have issued an ON command or set an OCCURRENCE
breakpoint for the specified condition, Debug Tool runs the associated
commands. See[‘ON Command (PL/l)” on page 287}

Chapter 13. Debug Tool Commands 227

AT Command

If there is no AT OCCURRENCE or ON set, then:

— If the current test-level setting is ALL, Debug Tool prompts you for
commands or reads them from a commands file.

— If the current test-level setting is ERROR, and the condition has an
error severity level of 2 or higher, Debug Tool gets commands by
prompting you or by reading from a commands file.

— If the current test-level setting is NONE, Debug Tool ignores the
condition and returns control to the program.

Once Debug Tool returns control to the program, any relevant PL/I
ON-unit is run. PL/I condition handling is described in IBM PL/I for
VSE/ESA Language Reference. Also see LE/VSE Programming Guide.

Examples:
¢ When a data exception occurs, query the current location. The current
programming language setting is either C or COBOL.
AT OCCURRENCE CEE347 QUERY LOCATION;
e When the SIGSEGV condition is raised, set an error flag and call a user
termination routine. The current programming language setting is C.

AT OCCURRENCE SIGSEGV {
error = 1;
terminate (error);

}
e Suppose SIGFPE maps to CEE347 and the following breakpoints are
defined. The current programming language setting is C.
AT OCCURRENCE SIGFPE LIST "SIGFPE condition";
AT OCCURRENCE CEE347 LIST "CEE347 condition";

If the LE/VSE condition CEE347 is raised, the CEE347 breakpoint is
triggered.

However, if a breakpoint had not been defined for CEE347 and the
CEE347 condition is raised, the SIGFPE breakpoint is triggered (since it
is mapped to CEE347).

AT PATH

Gives Debug Tool control when the flow of control changes (at a path point). AT
PATH is identical to AT GLOBAL PATH.

A\
A

»»—AT PATH—command

Le very_cl auseJ

every_clause
As described under [‘Every Clause” on page 209|

command
A valid Debug Tool command.

228 Debug Tool/VSE VIR1 User's Guide and Reference

AT Command

Usage Notes:

¢ For an explanation of path points and possible values for
%PATHCODE, which vary according to the language of your program,
see [‘Using Debug Tool Variables in C” on page 140 FUsing Debug Tool

ariables in COBOL” on page 167 or|“Using Debug Tool Variables in
PL/I” on page 181

e For a CICS application, this breakpoint is cleared at the end of the last
process in the application. For a non-CICS application, it is cleared at
the end of a process.

e For C, COBOL and PL/I, you can set PATH breakpoints if you compiled
with the PATH suboption. For more information, see[Chapter 2
[‘Preparing to Debug Your Program” on page 12}

e For COBOL and PL/I, you can set PATH breakpoints at any time
(default is PATH), but setting of other breakpoints is different for each
suboption of the compile-time TEST option. For more information, see

[‘Compiling a COBOL Program with the Compile-Time TEST Option” on|
[page 16] or FCompiling a PL/l Program_with the Compile-Time TEST]

Option” on page 19

Examples:

e Whenever a path point has been reached, display the five most recently
processed breakpoints and conditions.

AT PATH LIST LAST 5 HISTORY;

e Whenever a path point has been reached, display a message and
query the current location. The current programming language setting
is COBOL.

AT PATH PERFORM
LIST "Path point reached";
QUERY LOCATION;
GO;

END-PERFORM;

e Whenever a path point has been reached, the value of %PATHCODE
contains the code representing the type of path point stopped at. If the
program is stopped at the entry to a block, display the %PATHCODE.

AT PATH LIST %PATHCODE;

AT Prefix (Full-Screen Mode)

Sets a statement breakpoint when you issue this command via the Source window
prefix area. When one or more breakpoints have been set on a line, the prefix
area for that line is highlighted.

A\
A

»»—AT
l—integerJ

integer
Selects a relative statement (for C and PL/I) or a relative verb (for COBOL)
within the line. The default value is 1.

Chapter 13. Debug Tool Commands 229

AT Command

Example:

Set a breakpoint at the third statement or verb in the line (typed in the prefix
area of the line where the statement is found).

AT 3

No space is needed as a delimiter between the keyword and the integer;
hence, AT 3 is equivalent to AT3.

AT STATEMENT

Gives Debug Tool control at each specified statement or line within the given set of
ranges.

v

»>—AT
Levery_clauseJ tLINE
STATEMENT—

statement_id_range command
E(—Es tatement_i d_rangeJ—) —

*:

\ 4
A

every_clause
As described under FEvery_Clause” on page 209]

statement_id_range
A valid statement id or statement id range; see [‘Statement_Id_Range and|

[Stmt Id Spec” on page 204]
* Sets a breakpoint at every STATEMENT or LINE.

command
A valid Debug Tool command.

Usage Notes:

e A STATEMENT breakpoint set for a nonactive compile unit (one that is
not in the current enclave), is suspended until the compile unit becomes
active. A STATEMENT breakpoint set for a compile unit that is deleted
from storage is suspended until the compile unit is restored. A
suspended breakpoint cannot be triggered or operated on with
breakpoint commands.

e For a CICS application, this breakpoint is cleared at the end of the last
process in the application. For a non-CICS application, it is cleared at
the end of a process.

* You can specify the first relative statement on each line in any one of
three ways. If, for example, you want to set a STATEMENT breakpoint
at the first relative statement on line three, you can enter AT 3, AT 3.0,
or AT 3.1. However, Debug Tool logs them differently according to the
current programming language as follows:

— ForC

The first relative statement on a line is specified with "0". All of the
above breakpoints are logged as AT 3.0.

230 Debug Tool/VSE VIR1 User's Guide and Reference

AT Command

— For COBOL or PL/I

The first relative statement on a line is specified with "1". All of the
above breakpoints are logged as AT 3.1.

Examples:

e Set a breakpoint at statement or line number 23. The current
programming language setting is COBOL.

AT 23 LIST 'About to close the file';

» Set breakpoints at statements 5 through 9 of compile unit mycu. The
current programming language setting is C.

AT STATEMENT "mycu":>5 - 9;

e Set breakpoints at lines 19 through 23 and at statements 27 and 31.
AT LINE (19 - 23, 27, 31);

or
AT LINE (27, 31, 19 - 23);

AT TERMINATION

Gives Debug Tool control when the application program is terminated.

»>—AT—TERMINATION—command

\ 4
A

command
A valid Debug Tool command.

Usage Notes:

e AT TERMINATION does not allow specification of an every_clause
because termination can only occur once.

» |f Debug Tool has been initialized for any reason, the following default
form of this command is automatically in effect:

AT TERMINATION;

This definition causes control to be given to your terminal (or primary
commands file) when the program ends. This termination breakpoint
can be replaced or cleared at any time with the AT TERMINATION or
CLEAR AT TERMINATION command.

 |f this breakpoint is set in a parent enclave, it can be triggered and
operated on with breakpoint commands while the application is in a
child enclave.

e When Debug Tool gains control, normal execution of the program is
complete; however, a CALL or function invocation from Debug Tool can
continue to perform program code. When the AT TERMINATION
breakpoint gives control to Debug Tool:

— Fetched phases have not been released

— Files have not been closed

— Language-specific termination has been invoked yet no action has
been taken

In C, the user atexit() lists have already been called.

Chapter 13. Debug Tool Commands 231

BEGIN Command

Examples:

In PL/I, the FINISH condition was already raised.

You are allowed to enter any command with AT TERMINATION.
However, normal error messages are issued for any command that
cannot be completed successfully because of lack of information about
your program.

The TERMINATION breakpoint is set automatically at Debug Tool
initialization. It remains in effect for the entire Debug Tool session.
Changes made to this breakpoint in one enclave will remain in effect
when control is passed to another enclave.

You can enter DISABLE AT TERMINATION; or CLEAR AT TERMINATION; at
any time to disable or clear the breakpoint. It remains disabled or
cleared until you re-enable or reset it.

For a CICS application, this breakpoint is cleared at the end of the last
process in the application. For a non-CICS application, it is cleared at
the end of a process.

When the program ends, check the Debug Tool environment to see
what files have not been closed.

AT TERMINATION DESCRIBE ENVIRONMENT;

When the program ends, display the message "Program has ended"
and end the Debug Tool session. The current programming language
setting is C.
AT TERMINATION {

LIST "Program has ended";

QUIT;
}

BEGIN Command (PL/)

BEGIN and END delimit a sequence of one or more commands to form one longer

command.

»—BEGIN—;—Ecommand END—;

command
A valid

The BEGIN and END keywords cannot be abbreviated.

\ 4
A

Debug Tool command.

Usage Notes:

The BEGIN command is most helpful when used in AT, IF, or ON
commands.

The BEGIN command does not imply a new block or name scope. It is
equivalent to a PL/I simple DO.

232 Debug Tool/VSE VIR1 User's Guide and Reference

break Command

Examples:

e Set a breakpoint at statement 320 listing the value of variable x and
assigning the value of 2 to variable a.
AT 320 BEGIN;
LIST (x);
a=2;
END;

e When the PL/I condition FIXEDOVERFLOW is raised—that is, when the
length of the result of a fixed-point arithmetic operation exceeds the
maximum length allowed—list the value of variable x and assign the
value of 2 to variable a. The current programming language setting is
PL/I.

ON FIXEDOVERFLOW BEGIN; LIST (x); a=2; END;

block Command (C)

The block command allows you to group any number of Debug Tool commands
into one command. When you enclose Debug Tool commands within a single set
of braces ({}), everything within the braces is treated as a single command. You
can place a block anywhere a command is allowed.

»»—{ }

command-

\4
A

command
A valid Debug Tool command.

Usage Notes:
¢ Declarations are not allowed within a nested block.

e The C block command does not end with a semicolon. A semicolon
after the closing brace is treated as a Null command.

Example:

Establish an entry breakpoint when phase a is fetched.

AT LOAD a {
AT ENTRY a;
GO;

1

break Command (C)

The break command allows you to terminate and exit a loop (that is, do, for, and
while) or switch command from any point other than the logical end. You can
place a break command only in the body of a looping command or in the body of a
switch command. The break keyword must be lowercase and cannot be
abbreviated.

»»—break—;

\ 4
A

Chapter 13. Debug Tool Commands 233

CALL Command

In a looping statement, the break command ends the loop and moves control to the
next command outside the loop. Within nested statements, the break command
ends only the smallest enclosing do, for, switch, or while commands.

In a switch body, the break command ends the execution of the switch body and
gives control to the next command outside the switch body.

Examples:

e The following example shows a break command in the action part of a
for command. If the i-th element of the array string is equal to '\0',
the break command causes the for command to end.
for (i = 0; i <5; i++) {

if (string[i] == '\0"')
break;
length++;
}

e The following switch command contains several case clauses and one
default clause. Each clause contains a function call and a break
command. The break commands prevent control from passing down
through subsequent commands in the switch body.

char key;

key = '-';
AT LINE 15 switch (key)
{
case '+':
add();
break;
case '-':
subtract();
break;
default:
printf("Invalid key\n");
break;

CALL Command

The CALL command invokes either a procedure, entry name, or program name, or
it requests that an LE/VSE run-time dump be produced. The C equivalent for CALL
is a function reference. PL/I subroutines or functions cannot be called dynamically
during a Debug Tool session. The CALL keyword cannot be abbreviated.

In COBOL, the CALL command cannot be issued when Debug Tool is at
initialization.

The various forms of the CALL command are summarized in Table 10.

Table 10 (Page 1 of 2). Summary of CALL Commands

CALL %DUMP invokes the LE/VSE dump service to obtain a formatted
dump.

CALL entry_name (COBOL) invokes an entry name in the application program
(COBOL).

234 Debug Tool/VSE VIR1 User's Guide and Reference

CALL %DUMP

CALL Command

Table 10 (Page 2 of 2). Summary of CALL Commands

CALL procedure invokes a procedure that has been defined with the
PROCEDURE command.

Invokes the LE/VSE dump service to obtain a formatted dump.

»»—CALL—%DUMP

A\
A

EE— T
—options_string B B)
,—title

title
Specifies the identification printed at the top of each page of the dump. It must
be a fixed-length character string, conforming to the current programming
language syntax for a character string constant (that is, enclosed in quotes
according to the rules of that programming language). The string length cannot
exceed 80 bytes.

options_string
A fixed-length character string, conforming to the current programming
language syntax for a character string constant, which specifies the type,
format, and destination of dump information. The string length cannot exceed
247 bytes.

Options are declared as a string of keywords separated by blanks or commas.
Some options have suboptions that follow the option keyword and are
contained in parentheses. The options can be specified in any order, but the
last option declaration is honored if there is a conflict between it and any
preceding options.

The options_string can include the following:

TRACEBACK
Requests a traceback of active procedures, blocks, condition handlers, and
library phases on the call chain. The traceback shows transfers of control

from either calls or exceptions. The traceback extends backwards to the
main program of the current thread.

TRACEBACK can be abbreviated as TRACE.

NOTRACEBACK
Suppresses traceback.

NOTRACEBACK can be abbreviated as NOTRACE.

FILES
Requests a complete set of attributes of all files that are open and the
contents of the buffers used by the files.

FILES can be abbreviated as FILE.

NOFILES
Suppresses file attributes of files that are open.

NOFILES can be abbreviated as NOFILE.

Chapter 13. Debug Tool Commands 235

CALL Command

VARIABLES

Requests a symbolic dump of all variables, arguments, and registers.

Variables include arrays and structures. Register values are those saved
in the stack frame at the time of call. There is no way to print a subset of
this information.

Variables and arguments are printed only if the symbol tables are
available. A symbol table is generated if a program is compiled using the
compile options shown below for each language:

Language Compile Option

C TEST(SYM)

COBOL TEST or TEST(hook,SYM)
PL/I TEST(,SYM)

The variables, arguments, and registers are dumped starting with Debug
Tool. The dump proceeds up the chain for the number of routines
specified by the STACKFRAME option.

VARIABLES can be abbreviated as VAR.

NOVARIABLES

Suppresses dump of variables, arguments, and registers.
NOVARIABLES can be abbreviated as NOVAR.

BLOCKS

Produces a separate hexadecimal dump of control blocks used in LE/VSE
and member language libraries.

Global control blocks and control blocks associated with routines on the
call chain are printed. Control blocks are printed for Debug Tool. The
dump proceeds up the call chain for the number of routines specified by
the STACKFRAME option.

If FILES is specified, this is used to produce a separate hexadecimal dump
of control blocks used in the file analysis.

BLOCKS can be abbreviated as BLOCK.

NOBLOCKS

Suppresses the hexadecimal dump of control blocks.
NOBLOCKS can be abbreviated as NOBLOCK.

STORAGE

Dumps the storage used by the program.

The storage is displayed in hexadecimal and character format. Global
storage and storage associated with each routine on the call chain is
printed. Storage is dumped for Debug Tool. The dump proceeds up the
call chain for the number of routines specified by the STACKFRAME
option. Storage for all file buffers is also dumped if the FILES option is
specified.

STORAGE can be abbreviated as STOR.

236 Debug Tool/VSE VIR1 User's Guide and Reference

CALL Command

NOSTORAGE
Suppresses storage dumps.

NOSTORAGE can be abbreviated as NOSTOR.
STACKFRAME(nIALL)
Specifies the number of stack frames dumped from the call chain.

If STACKFRAME(ALL) is specified, all stack frames are dumped. No stack
frame storage is dumped if STACKFRAME(O) is specified.

The particular information dumped for each stack frame depends on the
VARIABLE, BLOCK, and STORAGE option declarations specified. The
first stack frame dumped is the one associated with Debug Tool, followed
by its caller, and proceeding backwards up the call chain.

STACKFRAME can be abbreviated to SF.

PAGESIZE(n)
Specifies the number of lines on each page of the dump.

This value must be greater than 9. A value of zero (0) indicates that there
should be no page breaks in the dump.

PAGESIZE can be abbreviated to PAGE. The default setting is
PAGESIZE(60).

FNAME(s)
Specifies the filename of the file where the dump report is written.

The default filename CEEDUMP is used if this option is not specified.

If the filename supplied is not valid, or the file specified by the filename is
not defined in your job control, the output is written to SYSLST.

CONDITION
Specifies that for each condition active on the call chain, the following
information is dumped from the Condition Information Block (CIB):

e The address of the CIB
e The message associated with the current condition token

e The message associated with the original condition token, if different
from the current one

e The location of the error
¢ The machine state at the time the condition manager was invoked

e The ABEND code and REASON code, if the condition occurred
because of an ABEND.

The particular information that is dumped depends on the condition that
caused the condition manager to be invoked. The machine state is
included only if a hardware condition or ABEND occurred. The ABEND
and REASON codes are included only if an ABEND occurred.

CONDITION can be abbreviated as COND.

NOCONDITION
Suppresses dump condition information for active conditions on the call
chain.

NOCONDITION can be abbreviated as NOCOND.

Chapter 13. Debug Tool Commands 237

CALL Command

ENTRY

Includes in the dump a description of the Debug Tool routine that called
the LE/VSE dump service and the contents of the registers at the point of
the call. For the currently supported programming languages, ENTRY is

extraneous and will be ignored.

NOENTRY

Suppresses the description of the Debug Tool routine that called the
LE/VSE dump service and the contents of the registers at the point of the

call.

The defaults for the preceding options are:

CONDITION
FILES
FNAME(CEEDUMP)
NOBLOCKS
NOENTRY
NOSTORAGE
PAGESIZE(60)
STACKFRAME(ALL)
THREAD(CURRENT)
TRACEBACK
VARIABLES

Usage Notes:

As Debug Tool utilises C for its own file 1/0, any dump produced will
include information for an active C run-time environment.

If incorrect options are used, a default dump is written.

Debug Tool does not analyze any of the CALL %DUMP options, but
just passes them along to the LE/VSE dump service. Some of these
options might not be very appropriate, because the call is being made
from Debug Tool rather than from your program.

See LE/VSE Programming Reference for additional details on the
CEE5DMP dump options.

Control might not be returned to Debug Tool after the dump is
produced, depending on the option string specified.

COBOL does not do anything if the FILES option is specified; the
BLOCKS option gives the file information instead.

For detailed descriptions of dump output for the different HLLs, see
LE/VSE Debugging Guide and Run-Time Messages.

Using a small n (like 1 or 2) with the STACKFRAME option will not
produce useful results because only the Debug Tool stack frames
appear in your dump. Larger values of n or ALL should be used to
ensure that application stack frames are shown.

238 Debug Tool/VSE VIR1 User's Guide and Reference

Examples:

CALL Command

Request a formatted dump that traces active procedures, blocks,
condition handlers, and library phases. Identify the dump as "Dump
after read".

CALL %DUMP ("TRACEBACK", "Dump after read");

Call the LE/VSE dump service to obtain a formatted dump including
traceback information, file attributes, and buffers.

CALL %DUMP ("TRACEBACK FILES");

CALL entry_name (COBOL)

Invokes an

entry name in the application program. The entry name must be a valid

external entry point name (that is, callable from other compile units).

»»—CA LL_E

identif
Zit‘eral4

ier L
USING—*—{ identifier_clause }JJ

identifier_clause:

1

I identifier |
\—i'fREFERENCEJ |—ADDRESS—OF—‘
BY

N v . e |
CONTENT dent
L gy L ADDRESS—OF identifter
LENGTH—OF
literal

identifier

A valid Debug Tool COBOL identifier.
literal

A valid COBOL literal.

Usage Notes:

If you have a COBOL entry point name that is the same as a Debug
Tool procedure name, the procedure name takes precedence when
using the CALL command. If you want the entry name to take
precedence over the Debug Tool procedure name, you must qualify the
entry name when using the CALL command.

You can use the CALL entry_name command to change program flow
dynamically. You can pass parameters to the called module.

The CALL follows the same rules as CALLs within the COBOL
language.

The COBOL ON OVERFLOW and ON EXCEPTION phrases are not
supported, so END-CALL is not supported.

Only CALLs to separately compiled programs are supported; nested
programs are not CALLable by this Debug Tool command (they can of
course be invoked by GOTO or STEP to a compiled-in CALL).

All CALLs are dynamic, that is, the CALLed program (whether specified
as a literal or as an identifier) is loaded when it is CALLed.

See IBM COBOL for VSE/ESA Language Reference for an explanation
of the following COBOL keywords: ADDRESS, BY, CONTENT,
LENGTH, OF, REFERENCE, USING.

Chapter 13. Debug Tool Commands 239

CLEAR Command

Example:

Call the entry name subl passing the variables a, b, and c.
CALL "subl" USING a b c;

CALL procedure
Invokes a procedure that has been defined with the PROCEDURE command.

»»—CALL—procedure_name—;

\ 4
A

procedure_name
The name given to a sequence of Debug Tool commands delimited by a
PROCEDURE command and a corresponding END command.

Usage Notes:

e Since the Debug Tool procedure names are always uppercase, the
procedure name is converted to uppercase even for programming
languages that have mixed-case symbols.

e The CALL keyword is required even for programming languages that do
not use CALL for subroutine invocations.

e The CALL command is restricted to calling procedures in the currently
executing enclave.

Example: Create and call the procedure named procl.

procl: PROCEDURE;
LIST (r, c);

END;

AT 54 CALL procl;

CLEAR Command

The CLEAR command removes the actions of previously issued Debug Tool
commands. Some breakpoints are removed automatically when Debug Tool
determines that they are no longer meaningful. For example, if you set a
breakpoint in a fetched or loaded compile unit, the breakpoint is discarded when
the compile unit is released.

240 Debug Tool/VSE VIR1 User's Guide and Reference

CLEAR Command

\ 4
A

»»—CLEAR AT :
AT_command-
generic_AT_command—

—DECLARE
tidentifier

(—E%dentifierj—)—

—EQUATE
t:identifier
(—[§dentifierj—)—

—LOG
—MONITOR
tnumber‘
(—¥ pumber—L—)]
—ON
tpl i_condition
(—E;;Z i_condit ionj—)—
—PROCEDURE
—procedure_name
—(—E;;rocedure_name——l—)—
—VARIABLES
—identifier
—(—Ezdentifier‘]—)—

AT
Removes all breakpoints from previously issued AT commands (including
GLOBAL breakpoints).

AT_command
A valid AT command that includes at least one operand. See
for a list of valid AT commands. The syntax of the AT command
must be complete except that the every_clause and command items are
omitted.

generic_AT_command
A valid AT command without operands. It can be one of the following:

ALLOCATE DELETE OCCURRENCE
APPEARANCE ENTRY PATH

CALL EXIT STATEMENT
CHANGE LABEL TERMINATION.
CURSOR LOAD

(the LINE keyword can be used in place of STATEMENT)

DECLARE
Removes previously defined variables and tags. If no identifier follows
DECLARE, all session variables and tags are cleared. DECLARE is equivalent
to VARIABLES.

identifier
The name of a session variable or tag declared during the Debug Tool

session. This operand must follow the rules for the current programming
language.

Chapter 13. Debug Tool Commands 241

CLEAR Command

EQUATE
Removes previously defined symbolic references. If no identifier follows
EQUATE, all existing SET EQUATE synonyms are cleared.

identifier
The name of a previously defined reference synonym declared during the
Debug Tool session using SET EQUATE. This operand must follow the
rules for the current programming language.

LOG
Erases the log file and clears out the data being retained for scrolling.

MONITOR
Clears the commands defined for MONITOR. If no number follows MONITOR,
the entire list of commands affecting the monitor window is cleared; the Monitor
window is empty.

number
A positive integer that refers to a monitored command. If a list of integers
is specified, all commands represented by the specified list are cleared.

ON (PL/N)
Removes the effect of an earlier ON command. If no pli_condition follows ON,
all existing ON commands are cleared.

pli_condition
Identifies an exception condition for which there is an ON command
defined.

PROCEDURE
Clears previously defined Debug Tool procedures. If no procedure_name
follows PROCEDURE, all inactive procedures are cleared.

procedure_name
The name given to a sequence of Debug Tool commands delimited by a
PROCEDURE command and a corresponding END command. The
procedure must be currently in storage and not active.

VARIABLES
Removes previously defined variables and tags. If no identifier follows
VARIABLES, all session variables and tags are cleared. VARIABLES is
equivalent to DECLARE.

identifier
The name of a session variable or tag declared during the Debug Tool
session. This operand must follow the rules for the current programming
language.

Usage Notes:

e Only an AT LINE or AT STATEMENT breakpoint can be cleared with a
CLEAR AT CURSOR command.

e To clear every single breakpoint in the Debug Tool session, issue
CLEAR AT followed by CLEAR AT TERMINATION.

e To clear a global breakpoint, you can specify an asterisk (*) with the
CLEAR AT command or you can specify a CLEAR AT GLOBAL
command.

242 Debug Tool/VSE VIR1 User's Guide and Reference

CLEAR Command

If you have only a global breakpoint set and you specify CLEAR AT
ENTRY without the asterisk (*) or GLOBAL keyword, you get a
message saying there are no such breakpoints.

Examples:

* Remove the LABEL breakpoint set in the program at label create.
CLEAR AT LABEL create;

¢ Remove previously defined variables x, y, and z.
CLEAR DECLARE (x, y, 2z);

¢ Remove the effect of the ninth command defined for MONITOR.
CLEAR MONITOR 9;

* Remove the structure type definition tagone (assuming all variables
declared interactively using the structure tag have been cleared). The
current programming language setting is C.

CLEAR VARIABLES struct tagone;

e Establish some breakpoints with the AT command and then remove
them with the CLEAR command (checking the results with the LIST
command).

AT 50;

AT 56;

AT 55 LIST (r, c);
LIST AT,

CLEAR AT 50;

LIST AT;

CLEAR AT;

LIST AT,

e If you want to clear an AT ENTRY * breakpoint, specify:

CLEAR AT ENTRY =*;
or
CLEAR AT GLOBAL ENTRY;

CLEAR Prefix (Full-Screen Mode)

Clears a breakpoint when you issue this command via the source window prefix
area.

Chapter 13. Debug Tool Commands 243

COMMENT Command

\ 4
A

»»—CLEAR AT :
AT_command-
generic_AT_command—

—DECLARE
tidentifier

(—E%dentifierj—)—

—EQUATE
t:identifier
(—[§dent ifierl)—

—LOG
—MONITOR
tnumber‘
(—¥ pumber—L—)]
—ON
tpl i_condition
(—[;;Z i_condit ionj—)—
—PROCEDURE
—procedure_name
—(—E;’)rocedur‘e_name——l—)—
—VARIABLES
—identifier
—(—Ezdentifier‘]—)—

integer
Selects a relative statement (for C and PL/I) or a relative verb (for COBOL)
within the line to remove the breakpoint if there are multiple statements on that
line. The default value is 1.

Example:

Clear a breakpoint at the third statement or verb in the line (typed in the
prefix area of the line where the statement is found).

CLEAR 3

No space is needed as a delimiter between the keyword and the integer;
hence, CLEAR 3 is equivalent to CLEARS.

COMMENT Command

The COMMENT command can be used to insert commentary in to the session log.
The COMMENT keyword cannot be abbreviated.

»>—COMMENT

\ 4
A

|—commen tar‘yJ

commentary
Commentary text not including a semicolon. An embedded semicolon is not
allowed; text after a semicolon is treated as another Debug Tool command.
DBCS characters can be used within the commentary.

The COMMENT command can be used as an executable command, that is it can
be the subject of a conditional command, but it is treated as a Null command.

244 Debug Tool/VSE VIR1 User's Guide and Reference

Examples:

COMPUTE Command

Comment that varb1xx seems to have the wrong value.
COMMENT At this point varblxx seems to have the wrong value;
Combine a commentary with valid Debug Tool commands.
COMMENT Entering subroutine testrun; LIST (x); GO;

COMPUTE Command (COBOL)

The COMPUTE command assigns the value of an arithmetic expression to a
specified reference. The COMPUTE keyword cannot be abbreviated.

»»>—COMPUTE—reference—=—expression—;

reference

\ 4
A

A valid Debug Tool COBOL numeric reference.

expression

A valid Debug Tool COBOL numeric expression.

Usage Notes:

Examples:

If Debug Tool was invoked because of a computational condition or an
attention interrupt, using an assignment to set a variable might not give
expected results. This is due to the uncertainty of variable values within
statements as opposed to their values at statement boundaries.

COMPUTE assigns a value only to a single receiver; unlike COBOL,
multiple receiver variables are not supported.

Floating-point receivers are not supported; however, floating-point
values can be set by using the MOVE command (see [MOVE
[Command (COBOL)” on page 286).

The COBOL EQUAL keyword is not supported ("=" must be used).

The COBOL ROUNDED and SIZE ERROR phrases are not supported,
so END-COMPUTE is not supported.

If the expression consists of a single numeric operand, the COMPUTE
will be treated as a MOVE and therefore subject to the same rules as
the MOVE command.

Assign to variable x the value of a + 6.
COMPUTE x = a + 6;

Assign to the variable mycode the value of the Debug Tool variable
%PATHCODE + 1.

COMPUTE mycode = %PATHCODE + 1;

Chapter 13. Debug Tool Commands 245

Declarations

CURSOR Command (Full-Screen Mode)

The CURSOR command moves the cursor between the last saved position on the
Debug Tool session panel (excluding the header fields) and the command line.

»—CURSOR—;

A\
A

Usage Notes:

e The cursor position can be saved by typing the CURSOR command on
the command line and moving the cursor before pressing Enter, or by
moving the cursor and pressing a PF key with the CURSOR command
assigned to it.

¢ |f the CURSOR command precedes any command on the command
line, the cursor is moved before the other command is performed. This
can be useful in saving cursor movement for commands that are
performed repeatedly in one of the windows.

e The CURSOR command is not logged.
Example:

Move the cursor between the last saved position on the Debug Tool session
panel and the command line.

CURSOR;

Declarations

Use declarations to declare temporary variables and tags effective during a Debug
Tool session. Session variables remain in effect for the entire debug session, or
process in which they were declared. Variables and tags declared with
declarations can be used in other Debug Tool commands as if they were declared
to the compiler. Declared variables and tags are removed when your Debug Tool
session ends or when the CLEAR command is used to remove them. The
keywords must be the correct case and cannot be abbreviated.

Language Compatible Attributes

While working in one language, you can declare session variables that you can
continue to use after calling in a phase of a different language.
shows how session data attributes are mapped across programming
languages. Attributes not shown in the table cannot be mapped to other
programming languages.

Remember when declaring session variables that C variable names are
case-sensitive. When the current programming language is C, only variables that
are declared with uppercase names can be shared with COBOL or PL/I. When the
current programming language is COBOL or PL/I, variable names in mixed or
lowercase are mapped to uppercase. These COBOL or PL/I variables can be
declared or referenced using any mixture of lowercase and uppercase characters
and it makes no difference. However, if the variable is shared with C, within C, it
can only be referred to with all uppercase characters (since a variable name
composed of the same characters, but with one or more characters in lowercase, is
a different variable name in C).

246 Debug Tool/VSE VIR1 User's Guide and Reference

Declarations

Variables with incompatible attributes cannot be shared between other
programming languages, but they do cause variables with the same names to be
deleted. For example, COBOL has no equivalent to PL/I's FLOAT DEC(33) or C's
Tong double. With the current programming language COBOL, if a session variable
X is declared PICTURE S9(4) it will exist when the current programming language
setting is PL/I with the attributes FIXED BIN(15,0) and when the current
programming language setting is C with the attributes signed short int. If the
current programming language setting is changed to PL/I and a session variable X
is declared FLOAT DEC(33), the X declared by COBOL will no longer exist. The
variable X declared by PL/I will exist when the current programming language
setting is C with the attributes Tong doubTe.

Table 11. Attribute Mappings

Machine Value C Value COBOL Value PL/l Value

byte unsigned char PICTURE X CHAR(1)

byte string unsigned charfj] PICTURE X(j) CHAR(j)

halfword signed short int PICTURE S9(j<=4) USAGE BINARY FIXED BIN(15,0)

fullword signed long int PICTURE S9(4<j<=9) USAGE BINARY FIXED BIN(31,0)

floating point float USAGE COMP-1 FLOAT BIN(21) or FLOAT DEC(6)
long floating point double USAGE COMP-2 FLOAT BIN(53) or FLOAT DEC(16)
extended floated long double n/a FLOAT BIN(109) or FLOAT DEC(33)
point

fullword pointer void * USAGE POINTER POINTER

Note:

When registering session variables in PL/I, the DECIMAL type is always the default. For example, if C declares a float, PL/I
registers the variable as a FLOAT DEC(6) rather than a FLOAT BIN(21).

Declarations (C)

You can also declare enum, struct, and union data types. The syntax is identical
to C except that enum members can only be initialized to an optionally signed
integer constant.

Chapter 13. Debug Tool Commands 247

Declarations

—|
> scalar_def declarator
enum_def
struct_i def
union_def dec]arator
scalar_def:
——char
i:signed
unsigned
—double
|—1ongJ
—float

—int
i:signedi‘ long
unsigned short

—Tlong
L signed |—1ntJ

unsigned
double—————-
—short
t:signed LintJ
unsigned
—signed
long I—1'ntJ
short
char
—unsigned
long |—1’ntJ
short
char————
—void—%*
declarator:
identifier:
(—identifier—)——
*
identifier—}:['integer']l
enum_def:
}—enum—L—J—{—[%dentifier o | }
identifier - constant_expr
struct_def:

i+ dentlfzer

struct i
|—_PackedJ ‘—zdentlfzerJ L

enum_def
scalar_def
struct_def
union_def

union_def:

i+ dentzfzer

union i
L PackedJ deentzfzerJ L

enum_def
scalar_def
struct_def
union_def

* A C indirect operator.

identifier
A valid C identifier.

integer
A valid C array bound integer constant.

constant_expr
A valid C integer constant.

248 Debug Tool/VSE VIR1 User's Guide and Reference

Declarations

Usage Notes:

Examples:

As in C, the keywords can be specified in any order. For example,
unsigned long int is equivalent to int unsigned long. Some permutations
are shown in the syntax diagram to make sure that every keyword is
shown at least once in the initial position.

As in C, the identifiers are case-sensitive; that is, "X" and "x" are
different names.

A structure definition must have either an identifier, a declarator, or
both specified.

Initialization is not supported.

A declaration cannot be used in a command list; for example, as the
subject of an if command or case clause.

Declarations of the form struct tag identifier must have the tag
previously declared interactively.

Only variables with attributes listed in the [Table 11 on page 247 fable
can be declared.

See IBM C for VSE/ESA Language Reference for an explanation the
following keywords:

char short
double signed
enum struct
float union

int unsigned
long void
_Packed

Define two C integers.

int myvar, hisvar;

Define an enumeration variable status that represents the following
values:

Enumeration Constant Integer
Representation

run 0

create 1

delete 5

suspend 6

enum statustag {run, create, delete=5, suspend} status;

Define a variable in a struct declaration.

struct atag {
char foo;
int varl;

} avar;

Chapter 13. Debug Tool Commands 249

Declarations

Interactively declare variables using structure tags.
struct tagone {int a; int b;} c;
then specify:

struct tagone d;

Declarations (COBOL)

The syntax for declarations in COBOL is:

»—Eievel—identifier |

attribute:

—L{ attribute IJ—

\ 4

A

level
1 or77.

PIC picture
PICTUREJ |—ISJ

B POINTER
USAGE‘L—J—i —BINARY——
IS —COMP

identifier

picture
A sequence of characters from the set: S X 9 (replication factor is optional).

If picture is not X(*), the COBOL USAGE clause is required.

—COMPUTATIONAL—
—COMP-1——
—COMPUTATIONAL-1—
—COMP-2———
—COMPUTATIONAL-2—

A valid COBOL data name (including DBCS data names).

Usage Notes:

A declaration cannot be used in a command list; for example, as the
subject of an IF command or WHEN clause.

BINARY and COMP are equivalent.

Use BINARY or COMP for COMPUTATIONAL-4.

COMP-1 is short floating point (4 bytes).

COMP-2 is long floating point (8 bytes).

Only COBOL PICTURE and USAGE clauses are supported.
Short forms of COMPUTATIONAL (COMP) are supported.

Only variables with attributes listed in[Table 11 on page 247|can be
declared.

250 Debug Tool/VSE VIR1 User's Guide and Reference

DECLARE Command

e See IBM COBOL for VSE/ESA Language Reference for an explanation
of the following COBOL keywords:

BINARY PIC
COMP PICTURE
COMPUTATIONAL POINTER
IS USAGE

Examples:
e Define a variable named floattmp to hold a floating-point number.
01 floattmp USAGE COMP-1;
e Define an integer variable name temp.
77 temp PIC S9(9) USAGE COMP;

DECLARE Command (PL/)

The syntax for declarations in PL/I is:

> DCL : major_structure | | ;
DECLARE scalar l—|

major_structure:

I—EZeveZ—name | |
attribute

A\
A

scalar:
e : | |

I Lﬂaﬁ’e J |
(—trame - Lgreripute

level
An unsigned positive integer. Level 1 must be specified for major structure
names.

name
A valid PL/I identifier. The name must be unique within a particular structure
level.

When name conflicts occur, Debug Tool uses session variables before using
other variables of the same name that appear in the running programs. Use
qualification to refer to the program variable during a Debug Tool session. For
example, to display the variable a declared with the DECLARE command as
well as the variable a in the program, issue the LIST command as follows:

LIST (a, %BLOCK:a);

If a name conflict occurs because the variable was declared earlier with a
DECLARE command, the new declaration overrides the previous one.

Chapter 13. Debug Tool Commands 251

DECLARE Command

attribute

A PL/I data or storage attribute.

Acceptable PL/I data attributes are:

BINARY CPLX FIXED LABEL PTR

BIT DECIMAL FLOAT OFFSET REAL
CHARACTER EVENT GRAPHIC POINTER VARYING
COMPLEX

Acceptable PL/I storage attributes are:

ALIGNED BASED UNALIGNED

Only simple factoring of attributes is allowed. DECLARESs such as the following
are not allowed:

DCL (a(2), b) PTR;
DCL (x REAL, y CPLX) FIXED BIN(31);

Also, the precision attribute and scale factor as well as the bounds of a
dimension can be specified. If a temporary variable has dimensions and
bounds, these must be declared following PL/I Language rules. See IBM PL/I
for VSE/ESA Language Reference for more details.

Usage Notes:

¢ DECLARE is not valid as a subcommand. That is, it cannot be used as
part of a DO/END or BEGIN/END block.

¢ |Initialization is not supported.
e Program DEFAULT statements do not affect the DECLARE command.

» Only variables with attributes listed in[Table 11 on page 247 [can be
shared.

e See IBM PL/I for VSE/ESA Language Reference for an explanation of
the following PL/I data and storage attributes:

ALIGNED CHARACTER EVENT LABEL REAL
BASED COMPLEX FIXED OFFSET UNALIGNED
BINARY CPLX FLOAT POINTER VARYING
BIT DECIMAL GRAPHIC PTR

Examples:

e Declare x, y, and z as variables that can be used as pointers.
DECLARE (x, y, z) POINTER;

e Declare a as a variable that can represent binary, fixed-point data items
of 15 bits.

DECLARE a FIXED BIN(15);

» Declare d03 as a variable that can represent binary, floating-point,
complex data items.

DECLARE d03 FLOAT BIN COMPLEX;
This d03 will have the attribute of FLOAT BINARY(21).

252 Debug Tool/VSE VIR1 User's Guide and Reference

DESCRIBE Command

* Declare x as a pointer, and setx as a major structure with structure
elements a and b as fixed-point data items.

DECLARE x POINTER, 1 setx, 2 a FIXED, 2 b FIXED;
This a and b will have the attributes of FIXED DECIMAL(5).

DESCRIBE Command

The DESCRIBE command displays the attributes of references, compile units, and
the execution environment.

—CURSOR

A\
A

»»—DESCRIBE

ATTRIBUTES Ha
—reference

—(—Er"eferencej—)—

CUS
|—PROG RAMSJ cu_spec

=)—

cu_spec

*

—ENVIRONMENT

CURSOR (Full-Screen Mode only)
Provides a cursor-controlled method for describing variables, structures, and
arrays. If you have assigned DESCRIBE to a PF key, you can display the
attributes of a selected variable by positioning the cursor at that variable and
pressing the assigned PF key.

ATTRIBUTES
Displays the attributes of a specified variable or, in C, a tag or expression. The
attributes are ordinarily those that appeared in the declaration of a variable or
are assumed because of the defaulting rules. DESCRIBE ATTRIBUTES works
only for variables accessible to the current programming language. All
variables in the currently qualified block are described if no operand is
specified.

reference
A valid Debug Tool reference in the current programming language. Note:

e In C, this can be a valid expression, enumeration tag, structure tag, or
union tag identifier. For a C expression, the type is the only attribute
displayed. You must use enum, struct, or union when referencing the
C tag; see [‘Declarations (C)” on page 247|for more information.

e In COBOL, this can be any user-defined name appearing in the DATA
DIVISION. Names can be subscripted or substringed if they are
defined as arrays or alphanumeric data.

e In PL/I, if the variable is in a structure, it can have inherited dimensions
from a higher level parent. The inherited dimensions appear as if they
have been part of the declaration of the variable.

» For more information, see|‘References” on page 203|

Chapter 13. Debug Tool Commands 253

DESCRIBE Command

Describes all variables in the compile unit.

Ccus

Describes the attributes of compile units, including such things as the
compile-time options and list of internal blocks. The information returned is
dependent on the HLL that the compile unit was compiled under. CUS is
equivalent to PROGRAMS.

cu_spec
A valid compile unit specification; see ['CU_Spec” on page 201} The
default is the currently qualified compile unit.

* Describes all compile units.

PROGRAMS
Is equivalent to CUS.

ENVIRONMENT
The information returned includes a list of the currently opened files. Names of
files that have been opened but are not currently open are excluded from the
list. COBOL does not provide any information for DESCRIBE ENVIRONMENT.

Usage Notes:

Examples:

Cursor pointing can be used by typing the DESCRIBE CURSOR
command on the command line and moving the cursor to a variable in
the source window before pressing Enter, or by moving the cursor and
pressing a PF key with the DESCRIBE CURSOR command assigned to
it.

When using the DESCRIBE CURSOR command for a variable that is
located by the cursor position, the variable's name cannot be split
across different lines of the source listing.

In C and COBOL, expressions containing parentheses () must be
enclosed in another set of parentheses when used with the DESCRIBE
ATTRIBUTES command. For example, DESCRIBE ATTRIBUTES ((x + y)
/ 2);.

For PL/I, DESCRIBE ATTRIBUTES will return only the top-level names
for structures. DESCRIBE ATTRIBUTES * is not supported for PL/I. To
get more detail, specify the structure name as the reference.

Display the attributes of the enumeration variable sum.

DESCRIBE ATTRIBUTES enum sums

Describe the attributes of argc, argv, boolean, i, 1d, and structure.
DESCRIBE ATTRIBUTES (argc, argv, boolean, i, 1d, structure);
Describe the current environment.

DESCRIBE ENVIRONMENT;

Display information describing program myprog.

DESCRIBE PROGRAMS myprog;

254 Debug Tool/VSE VIR1 User's Guide and Reference

DISABLE Command

DISABLE Command

The DISABLE command makes the AT breakpoint inoperative, but does not clear it;
you can ENABLE it later without typing the entire command again.

»»—DISABLE—AT_command-

A\
A

AT_command
An enabled AT command. The syntax of the AT command must be complete
except that the every_clause and command items are omitted. Valid forms are
the same as those allowed with CLEAR AT.

Usage Notes:

e To re-enable a disabled AT command, use the ENABLE command.

» Disabling an AT command does not prevent its replacement by a new
(enabled) version if an overlapping AT command is later specified. It
also does not prevent removal by a CLEAR AT command.

e Breakpoints already disabled within the range(s) specified in the specific
AT command are unaffected; however, a warning message is issued for
any specified range found to contain no enabled breakpoints.

Examples:

e Disable the breakpoint that was set by the command AT ENTRY myprog
CALL procl;.

DISABLE AT ENTRY myprog;
 [f statement 25 is in a loop and you set the following breakpoint:
AT EVERY 5 FROM 1 TO 100 STATEMENT 25 LIST x;
to disable it, enter:
DISABLE AT STATEMENT 25;

You do not need to reenter the every_clause or the command list. To
restore the breakpoint, enter:

ENABLE AT STATEMENT 25;

DISABLE Prefix (Full-Screen Mode)

Disables a statement breakpoint when you issue this command via the Source
window prefix area.

A\
A

»»—DISABLE
|_' J
integer

integer
Selects a relative statement (for C or PL/I) or a relative verb (for COBOL) within
the line. The default value is 1.

Chapter 13. Debug Tool Commands 255

DO Command

Example:

Disable the breakpoint at the third statement or verb in the line (typed in the
prefix area of the line where the statement is found).

DIS 3

For an example of the prefix area, see [Figure 20 on page 89|

No space is needed as a delimiter between the keyword and the integer;
hence, DIS 3 is equivalent to DIS3.

do/while Command (C)

The do/while command performs a command before evaluating the test
expression. Due to this order of execution, the command is performed at least
once. The do and while keywords must be lowercase and cannot be abbreviated.

\4
A

»»—do—command—while—(—expression—)—;

command
A valid Debug Tool command.

expression
A valid Debug Tool C expression.

The body of the loop is performed before the while clause is evaluated. Further
execution of the do/while command depends on the value of the while clause. If
the while clause does not evaluate to false, the command is performed again.
Otherwise, execution of the command ends.

A break command can cause the execution of a do/while command to end, even
when the while clause does not evaluate to false.

Example:

Perform a loop 11 times, and list the value of ctr each time through the
loop.

int ctr;

do {
Ctr++;
LIST ctr;
} while (ctr <= 10);

DO Command (PL/I)

The DO command allows one or more commands to be collected into a group
which can (optionally) be repeatedly executed. The DO and END keywords delimit
a group of commands collectively called a DO group. The keywords cannot be
abbreviated.

256 Debug Tool/VSE VIR1 User's Guide and Reference

DO Command

Simple

»—D0—; END—; ><
! command

command

A valid Debug Tool command.

Repeating
»—DO—[WH ILE—(—expression—)

v

|—UNTI L—(—express ion—)J

UNTIL—(—expression—
(P) |—WHILE—(—expr‘ession—)J

A\
A\
A

END—;

I ———

WHILE
Specifies that expression is evaluated before each execution of the command
list. If the expression evaluates to true, the commands are executed and the
DO group begins another cycle; if it evaluates to false, execution of the DO
group ends.

expression
A valid Debug Tool PL/I Boolean expression.

UNTIL
Specifies that expression is evaluated after each execution of the command list.
If the expression evaluates to false, the commands are executed and the DO
group begins another cycle; if it evaluates to true, execution of the DO group
ends.

command
A valid Debug Tool command.

Ilterative

»»—D0—reference—= l{ iteration ; END—;—»«
! command-

iteration:

F—expression >

BY—expression
P l—TO—exp ress ionJ

TO—expression

|—BY—exp ress ionJ
REPEAT—expression

> |
WHILE—(—expression—
t (P) |—UNTI L—(—express ion—)—J

UNTIL—(—expression—
(g) |—WHILE—(—expr‘ession—)J

Chapter 13. Debug Tool Commands 257

DO Command

reference
A valid Debug Tool PL/I reference.

expression
A valid Debug Tool PL/I expression.

BY
Specifies that expression is evaluated at entry to the DO specification and
saved. This saved value specifies the increment to be added to the control
variable after each execution of the DO group.

If BY expression is omitted from a DO specification and if TO expression is
specified, expression defaults to the value of 1.

If BY 0 is specified, the execution of the DO group continues indefinitely unless
it is halted by a WHILE or UNTIL option, or control is transferred to a point
outside the DO group.

The BY option allows you to vary the control variable in fixed positive or
negative increments.

TO
Specifies that expression is evaluated at entry of the DO specification and
saved. This saved value specifies the terminating value of the control variable.

If TO expression is omitted from a DO specification and if BY expression is
specified, repetitive execution continues until it is terminated by the WHILE or
UNTIL option, or until some statement transfers control to a point outside the
DO group.

The TO option allows you to vary the control variable in fixed positive or
negative increments.

REPEAT
Specifies that expression is evaluated and assigned to the control variable after
each execution of the DO group. Repetitive execution continues until it is
terminated by the WHILE or UNTIL option, or until some statement transfers
control to a point outside the DO group.

The REPEAT option allows you to vary the control variable nonlinearly. This
option can also be used for nonarithmetic control variables, such as pointers.

WHILE
Specifies that expression is evaluated before each execution of the command
list. If the expression evaluates to true, the commands are executed and the
DO group begins another cycle; if it evaluates to false, execution of the DO
group ends.

UNTIL
Specifies that expression is evaluated after each execution of the command list.
If the expression evaluates to false, the commands are executed and the DO
group begins another cycle; if it evaluates to true, execution of the DO group
ends.

command
A valid Debug Tool command.

258 Debug Tool/VSE VIR1 User's Guide and Reference

ENABLE Command

Examples:

e At statement 25, initialize variable a and display the values of variables
X, y, and z.

AT 25 DO; %BLOCK:>a = 0; LIST (x, y, z); END;

e Execute the DO group until ctr is greater than 4 or less than 0.

DO UNTIL (ctr > 4) WHILE (ctr >= 0); ...; END;
e Execute the DO group with i having the values 1, 2, 4, 8, 16, 32, 64,
128, and 256.

DO i = 1 REPEAT 2%i UNTIL (i = 256); END;

* Repeat execution of the DO group with j having values 1 through 20,
but only if k has the value 1.

DO j = 1 T0 20 BY 1 WHILE (k = 1); END;

ENABLE Command

The ENABLE command makes the AT breakpoints operative after they have been
disabled.

»»—ENABLE—AT_command-

\4
A

AT_command
A disabled AT command. The syntax of the AT command must be complete
except that the every_clause and command items are omitted. Valid forms are
the same as those allowed with CLEAR AT.

Usage Notes:
e To disable an AT command, use the DISABLE command.

» Breakpoints already enabled within the range(s) specified in the specific
AT command are unaffected; however, a warning message is issued for
any specified range found to contain no disabled breakpoints.

Example:

Enable the previously disabled command AT ENTRY mysub CALL procl;.
ENABLE AT ENTRY mysub;

ENABLE Prefix (Full-Screen Mode)

Enables a disabled statement breakpoint when you issue this command via the
Source window prefix area.

\ 4
A

»»—ENABLE
|—int‘eger—l

integer
Selects a relative statement (for C or PL/I) or a relative verb (for COBOL) within
the line. The default value is 1.

Chapter 13. Debug Tool Commands 259

EVALUATE Command

Example:

Enable the breakpoint at the third statement or verb in the line (typed in the
prefix area of the line where the statement is found).

ENABLE 3

No space is needed as a delimiter between the keyword and the integer;
hence, ENABLE 3 is equivalent to ENABLES.

EVALUATE Command (COBOL)

The EVALUATE command provides a shorthand notation for a series of nested IF
statements. The keywords cannot be abbreviated.

»»—EVALUATE——constant WHEN— any_clause | ¥ command >
expression—
reference—
TRUE
FALSE
> END-EVALUATE—; >
—WHEN—OTHER command-
any_clause:
| ANY—— |
condition—
TRUE
FALSE

—m——[cons tant J
NOT reference LETHRO

UGH constant
THRU—I I—reference—‘

constant
A valid Debug Tool COBOL constant.

expression
A valid Debug Tool COBOL arithmetic expression.

reference
A valid Debug Tool COBOL reference.

condition
A simple relation condition.

command
A valid Debug Tool command.

Usage Notes:
¢ Only a single subject is supported.
e Consecutive WHENs without associated commands are not supported.
e THROUGH/THRU ranges can be specified as constants or references.

e See IBM COBOL for VSE/ESA Language Reference for an explanation
of the following COBOL keywords:

260 Debug Tool/VSE VIR1 User's Guide and Reference

Expression Command

ANY THROUGH
FALSE THRU
NOT TRUE
OTHER WHEN

Example:

The following example shows an EVALUATE command and the equivalent
coding for an IF command.

EVALUATE menu-input
WHEN "O"
CALL init-proc
WHEN "1" THRU "9"
CALL process-proc
WHEN "R"
CALL read-parms
WHEN "X"
CALL cTeanup-proc
WHEN OTHER
CALL error-proc
END-EVALUATE;

The equivalent IF command.

IF (menu-input = "0") THEN
CALL init-proc
ELSE
IF (menu-input >= "1") AND (menu-input <= "9") THEN
CALL process-proc
ELSE
IF (menu-input = "R") THEN
CALL read-parms
ELSE
IF (menu-input = "X") THEN
CALL cTeanup-proc
ELSE
CALL error-proc
END-IF;
END-IF;
END-IF;
END-IF;

Expression Command (C)

The Expression command evaluates the given expression. The expression can be
used to either assign a value to a variable or to call a function.

\4
A

»>—expression—s;

expression
A valid Debug Tool C expression. Assignment is affected by including one of
the C assignment operators in the expression. No use is made of the value
resulting from a stand-alone expression.

Chapter 13. Debug Tool Commands 261

FIND Command

Usage Note:

Function invocations in expressions are restricted to functions contained in
the currently executing enclave.

Examples:
¢ |Initialize the variables x, y, z and note that function invocations are
supported.

3 + 4/5;
73
8 » func(x, y);

X

z

¢ Increment y and assign the remainder of the integer division of omega by
4 to alpha.

alpha = (y++, omega % 4);

FIND Command

The FIND command provides full-screen, and batch mode search capability in
source and listing files, and full-screen searching of log and monitor objects as well.

\ 4
A

|—s tringJ CURSOR—
LOG—
MONITOR—
SOURCE—

string
The string searched for, conforming to the current programming language
syntax for a character string constant. The string length cannot exceed 128
bytes, excluding the quotes.

If string is not specified, the string from the previous FIND command is used.

Some examples of possible strings follow:

C COBOL PL/
IIABCII IIA5II 1 P76 1
"IntLink::*" 'A5'

CURSOR (Full-Screen Mode)
Specifies that the current cursor position selects the window searched.

LOG (Full-Screen Mode)
Selects the session Log window.

MONITOR (Full-Screen Mode)
Selects the Monitor window.

SOURCE (Full-Screen Mode)
Selects the Source window.

262 Debug Tool/VSE VIR1 User's Guide and Reference

for Command

Usage Notes:

Example:

Window defaulting can be controlled by the SET DEFAULT WINDOW
command.

If the current programming language setting is C, the search is
case-sensitive. Otherwise, the search is not case-sensitive.

In full-screen mode, the search begins at the top line displayed in the
window or at the location of the last found search argument if a
previous FIND was issued for any search string. If the end of the object
is reached without finding the search argument, FIND wraps to the top
of the object and continues the search. A message notifies you that
wrapping has occurred.

If the search argument is found, the window is scrolled until it is visible.
If the search target is DBCS, it is displayed as is. If the search target is
not DBCS, it is highlighted as specified by the SET COLOR command
and the cursor is placed at the beginning of the target. If the search
target is not found, the screen position is unchanged and the cursor is
not moved.

FIND can be made immediately effective in full-screen mode with the
IMMEDIATE command.

In batch mode, the search begins at the first line of the source listing or
source file, or at the location of the last found search argument if a
previous FIND was issued for the same string. If the end of the listing
is reached without finding the search argument, FIND wraps to the top
of the listing and continues the search without notification. However,
the line number is identified in the output.

If the search argument is found, the line containing it is displayed with a
vertical bar character (I) beneath the search target.

For PL/I, if the line found is not the first line of the statement, all lines
from the start of the statement are displayed, up to and including the
target line.

The full-screen FIND command is not logged; however, the FIND
command is logged in batch mode.

Indicate that you want to search the Monitor window for the name myvar.
The current programming language setting is either C or COBOL.

FIND "myvar" MONITOR;

for Command (C)

The for command provides iterative looping similar to the C for statement. It
enables you to do the following:

e Evaluate an expression before the first iteration of the command
(“initialization”).

e Specify an expression to determine whether the command should be performed
again (“controlling part”).

e Evaluate an expression after each iteration of the command.

Chapter 13. Debug Tool Commands 263

for Command

e Perform the command, or block, if the controlling part does not evaluate to
false.

The for keyword must be lowercase and cannot be abbreviated.

»—for—(; ;)—>
|—express ion3J

|—expr‘ess ionl | l—express ion2—|

v
A

»—command

expressioni,2,3
A valid Debug Tool C expression.

command
A valid Debug Tool command.

Debug Tool evaluates expression1 only before the command is performed for the
first time. You can use this expression to initialize a variable. If you do not want to
evaluate an expression before the first iteration of the command, you can omit this
expression.

Debug Tool evaluates expression2 before each execution of the command. If this
expression evaluates to false, the command does not run and control moves to the
command following the for command. Otherwise, the command is performed. |If
you omit expression2, it is as if the expression has been replaced by a nonzero
constant and the for command is not terminated by failure of this expression.

Debug Tool evaluates expression3 after each execution of the command. You
might use this expression to increase, decrease, or reinitialize a variable. If you do
not want to evaluate an expression after each iteration of the command, you can
omit expression3.

A break command can cause the execution of a for command to end, even when
the second expression does not evaluate to false. If you omit the second
expression, you must use a break command to stop the execution of the for
command.

Examples:

e The following for command lists the value of count 20 times. The for
command initially sets the value of count to 1. After each execution of
the command, count is incremented.

for (count = 1; count <= 20; count++)
LIST TITLED count;

Alternatively, the preceding example can be written with the following
sequence of commands to accomplish the same task.
count = 1;
while (count <= 20) {
printf("count = %d\n", count);
count++;

}

264 Debug Tool/VSE VIR1 User's Guide and Reference

GO Command

The following for command does not contain an initialization
expression.
for (; index > 10; --index) {

varlist[index] = varl + var2;

printf("varlist[%d] = %d\n", index, varlist[index]);

}

GO Command

The GO command causes Debug Tool to start or resume running your program.

A\
A

»»—(G0
|—BYPASS—J

BYPASS

Bypasses the user or system action for the AT-condition that caused the
breakpoint. It is valid only when Debug Tool is entered for an:

AT

CALL breakpoint, or

HLL or LE/VSE condition

Usage Notes:

Examples:

If GO is specified in a command list (for example, as the subject of an
IF command or WHEN clause), all subsequent commands in the list are
ignored.

If GO is specified within the body of a loop, it causes the execution of
the loop to end.

To suppress the logging of GO commands, use the SET ECHO OFF
command.

GO with no operand specified does not actually resume the program if
there are additional AT-conditions that have not yet been processed.
See the usage notes for the AT commands on page or an
explanation on processing multiple AT-conditions.

Resume execution.

GO;

Resume execution and bypass user and system actions for the
AT-condition that caused the breakpoint.

GO BYPASS;

Your application has abended with a protection exception, so an
OCCURRENCE breakpoint has been triggered. Correct the results of

the instruction which caused the exception and issue GO BYPASS; to
continue processing as if the abend had not occurred.

Chapter 13. Debug Tool Commands 265

GOTO Command

GOTO Command

The GOTO command causes Debug Tool to resume program execution at the
specified statement id. The GOTO keyword cannot be abbreviated. If you want
Debug Tool to return control to you at a target location, make sure there is a
breakpoint at that location.

\4
A

> GOTO—_I—s tatement_id—;
GO—TO

statement _id
A valid statement id; see[‘Statement Id” on page 203|

Usage Notes:

e If GOTO is specified in a command list (for example, as the subject of
an IF command or WHEN clause), all subsequent commands in the list
are ignored.

¢ PL/I allows GOTO in a command list on a call to PLITEST or
CEETEST.

e For COBOL, the GOTO command follows the COBOL language rules
for the GOTO statement.

e In PL/I, out-of-block GOTOs are allowed. However, qualification may be
needed.

e Statement GOTO's are not restricted if the program is compiled with
minimum optimization.

e Because statements may be removed by the compiler during
optimization, specify a reference or statement with the GOTO command
that can be reached during program execution. You can issue the LIST
STATEMENT NUMBERS command to determine the reachable
statements. See [‘Qualifying Variables and Changing the Point of View’]

on page 129

Examples:
* Resume execution at statement 23, where statement 23 is in a currently
active block.
GOTO 23;

If there's no breakpoint at statement 23, Debug Tool will run from
statement 23 until a breakpoint is hit.

¢ Resume execution at statement 45, where statement 45 is in a currently
active block.

AT 45
GOTO 45

266 Debug Tool/VSE VIR1 User's Guide and Reference

GOTO LABEL Command

GOTO LABEL Command

The GOTO LABEL command causes Debug Tool to resume program execution at
the specified statement label. The specified label must be in the same block. If
you want Debug Tool to return control to you at the target location, make sure there
is a breakpoint at that location.

\4
A

> GOTO statement_label—;
GO—TOJ |—LABELJ

statement_label
A valid statement label within the currently executing program or, in PL/I, a
label variable. See [‘Statement Label” on page 205|

Usage Notes:

e In PL/I, out-of-block GOTOs are allowed. However, qualification might
be needed. See [Qualifying Variables and Changing the Point of View’]

e The LABEL keyword is optional when either the target statement_label
is nonnumeric or if it is qualified (whether the actual label was
nonnumeric or not).

e For COBOL, you can use GOTO LABEL only if you compiled your
program with either PATH or ALL suboption and the SYM suboption of
the compile-time TEST option. A COBOL statement_label can have
either of the following forms:

— name

This form can be used in COBOL for reference to a section name
or for a COBOL paragraph name that is not within a section or is in
only one section of the block.

— name1 OF name2 or name1 IN name2

This form must be used for any reference to a COBOL paragraph
(name1) that is within a section (name2), if the same name also
exists in other sections in the same block. You can specify either
OF or IN, but Debug Tool always uses OF for output.

Either form can be prefixed with the usual block, compile unit, and
phase qualifiers.

e For C, you can use GOTO LABEL only if you compiled your program
with either the PATH or ALL suboption and the SYM suboption of the
compile-time TEST option. There are no restrictions on using labels
with GOTO LABEL.

e For PL/I, you can use GOTO LABEL only if you compiled your program
with either the PATH or ALL suboption and the SYM suboption of the
compile-time TEST option. There are no restrictions on using labels
with GOTO LABEL and label variables are supported.

Chapter 13. Debug Tool Commands 267

if Command

Examples:
e Go to the label constant T1aba in block suba in program progl.
GOTO progl:>suba:>Taba;

e Go to the label constant para OF sectl. The current programming
language setting is COBOL.

GOTO LABEL para OF sectl;

if Command (C)

The if command lets you conditionally perform a command. You can optionally
specify an else clause on the if command. If the test expression evaluates to
false and an else clause exists, the command associated with the else clause is
performed. The if and else keywords must be lowercase and cannot be
abbreviated.

»»—if—(—expression—)—command

\ 4
A

|—e 1se—comman dJ

expression
A valid Debug Tool C expression.

command
A valid Debug Tool command.

When if commands are nested and else clauses are present, a given else is
associated with the closest preceding if clause within the same block.

Usage Note:

e An else clause should always be included if the if clause causes
Debug Tool to get more input (for example, an if containing USE or
other commands that cause Debug Tool to be reinvoked because an
AT-condition occurs).

Examples:

e The following example causes grade to receive the value "A" if the
value of score is greater than or equal to 90.
if (score >= 90)
grade = "A";

e The following example shows a nested if command.

if (paygrade == 7) {
if (Tevel >= 0 && Tlevel <= 8)
salary *= 1.05;
else

salary *= 1.04;
1

else
salary *= 1.06;

268 Debug Tool/VSE VIR1 User's Guide and Reference

IF Command

IF Command (COBOL)

The IF command lets you conditionally perform a command. You can optionally
specify an ELSE clause on the IF command. If the test expression evaluates to
false and an ELSE clause exists, the command associated with the ELSE clause is
performed. The keywords cannot be abbreviated.

»»—IF—condition B i ! command END-IF—>
THEN L 1
ELSE command
»—; >«
condition

A simple relation condition.

command
A valid Debug Tool command.

When IF commands are nested and ELSE clauses are present, a given ELSE or
END-IF is associated with the closest preceding IF clause within the same block.

Unlike COBOL, Debug Tool requires terminating punctuation (;) after commands.
The END-IF keyword is required.
Usage Notes:

e An ELSE clause should always be included if the IF clause causes
Debug Tool to get more input (for example, an IF containing USE or
other commands that cause Debug Tool to be reinvoked because an
AT-condition occurs).

e The COBOL NEXT SENTENCE phrase is not supported.

» Only the comparison combinations listed in [‘Allowable Comparisons for|
the Debug Tool IF Command” on page 349 are supported.

Examples:

e If the value of field-1 is equal to the value of field-2, go to the
statement with label constant Tabel-1. Execution of the user program
continues at label-1. If array-1 does not equal array-2, the GOTO is
not performed and control is passed to the user program.

IF field-1 = field-2 THEN GOTO LABEL label-1; ELSE GO;
e Set a breakpoint at statement 23, which will test if variable j is equal to

10, display the names and values of variables rmdr, totodd, and
terms(j). If variable j is not equal to 10, continue program execution.

AT 23 IF j = 10 THEN LIST TITLED (rmdr, totodd, terms(j)); ELSE GO;

IF Command (PL/I)

The IF command lets you conditionally perform a command. You can optionally
specify an ELSE clause on the IF command. If the test expression evaluates to
false and an ELSE clause exists, the command associated with the ELSE clause is
performed. The keywords cannot be abbreviated.

Chapter 13. Debug Tool Commands 269

IMMEDIATE Command

\4
A

»»—IF—expression—THEN—command B a
ELSE—command

expression
A valid Debug Tool PL/I expression.

If necessary, the expression is converted to a BIT string.

command
A valid Debug Tool command.

When IF commands are nested and ELSE clauses are present, a given ELSE is
associated with the closest preceding IF clause within the same block.

Usage Note:

e An ELSE clause should always be included if the IF clause causes
Debug Tool to get more input (for example, an IF containing USE or
other commands that cause Debug Tool to be reinvoked because an
AT-condition occurs).

Examples:

e |If the value of arrayl is equal to the value of array?2, go to the
statement with label constant Tabel 1. Execution of the user program
continues at label 1. If arrayl does not equal array2, the GOTO is
not performed and control is passed to the user program.

IF arrayl = array2 THEN GOTO LABEL label_1; ELSE GO;
e Set a breakpoint at statement 23, which will test if variable j is equal to

10, display the names and values of variables rmdr, totodd, and
terms(j). If variable j is not equal to 10, continue program execution.

AT 23 IF j = 10 THEN LIST TITLED (rmdr, totodd, terms(j)); ELSE GO;

IMMEDIATE Command (Full-Screen Mode)

The IMMEDIATE command causes a command within a command list to be
performed immediately. It is intended for use with commands assigned to a PF
key.

IMMEDIATE can only be entered as an unnested command or within a compound
command.

It is recommended that PF key definitions for FIND, RETRIEVE, SCROLL, and
WINDOW commands be prefixed with IMMEDIATE. This makes it possible to do
things like SCROLL even when entering a group of commands.

»»—IMMEDIATE—command

A\
A

command
One of the following Debug Tool commands:

FIND

RETRIEVE

SCROLL commands
BOTTOM

270 Debug Tool/VSE VIR1 User's Guide and Reference

INPUT Command

DOWN
LEFT
NEXT
RIGHT
TO
TOP
UP

WINDOW commands

CLOSE
OPEN
SIZE
ZOOM

Usage Note: The IMMEDIATE command is not logged.

Examples:

Specify that the WINDOW OPEN LOG command be immediately
effective.

IMMEDIATE WINDOW OPEN LOG;
Specify that the SCROLL BOTTOM command be immediately effective.
IMMEDIATE SCROLL BOTTOM;

INPUT Command (C and COBOL)

The INPUT command provides input for an intercepted read and is valid only when
there is a read pending for an intercepted file. The INPUT keyword cannot be
abbreviated.

»»—INPUT—text—;

text

\ 4
A

Specifies text input to a pending read.

Usage Notes:

The INPUT text consists of everything between the INPUT keyword and
the semicolon (or end-of-line). Any leading or trailing blanks are
removed by Debug Tool.

If a semicolon is included as part of the INPUT text, or if the first
character of the INPUT text is a quote, the INPUT text must conform to
the current programming language syntax for a character string constant
(that is, enclosed in quotes, with internal quotes entered according to
the rules of that programming language).

This command is not supported for CICS.

See ['SET INTERCEPT (C and COBOL)” on page 311|for information
about setting interception to and from a file.

Chapter 13. Debug Tool Commands 271

LIST Command

Example:

You have used SET INTERCEPT ON to make Debug Tool prompt you for
input to a sequential file. The prompt and the file's name appears in the
Command Log.

Indicate that the phrase "quick brown fox" is input to a pending read. The
phrase is written to the file.

INPUT quick brown fox;

Program input is recorded in your Log window.

A closing semicolon (;) is required for this command. Everything between
the INPUT keyword and the semicolon is considered input text. If you want
to include a semicolon in your input, or if the first character of your input is
a quote, you must enter your input as a valid character string for your
programming language.

LIST Command

272 Debug Tool/VSE VIR1 User's Guide and Reference

The LIST command displays information about a program such as values of
specified variables, structures, arrays, registers, statement numbers, frequency
information, and the flow of program execution. The LIST command can be used
to display information in any enclave. All information displayed will be saved in the

log file.

The various forms of the LIST command are summarized in Table 12.

Table 12 (Page 1 of 2). Summary of LIST Commands

LIST (blank) lists Source Identification panel

LIST AT lists the currently defined breakpoints.
LIST CALLS lists the dynamic chain of active blocks.
LIST CURSOR lists the variable pointed to by the cursor.

LIST Expression

lists values of expressions.

LIST FREQUENCY

lists statement execution counts.

LIST LAST

lists a list of recent entries in the history table.

LIST LINE NUMBERS

lists all line numbers that are valid locations for an AT LINE
breakpoint.

LIST LINES lists one or more lines from the current listing or source file
displayed in the Source window.

LIST MONITOR lists the current set of MONITOR commands.

LIST NAMES lists the names of variables, programs, or Debug Tool
procedures.

LIST ON lists the action (if any) currently defined for the specified PL/I

conditions.

LIST PROCEDURES

lists the commands contained in the specified Debug Tool
procedure.

LIST REGISTERS

lists the current register contents.

LIST (blank)

LIST AT

LIST Command

Table 12 (Page 2 of 2). Summary of LIST Commands

LIST STATEMENT lists all statement numbers that are valid locations for an AT
NUMBERS STATEMENT breakpoint.
LIST STATEMENTS lists one or more statements from the current listing or source

file displayed in the Source window.

LIST STORAGE provides a dump-format display of storage.

Displays the Source Identification Panel, where associations are made between
source listings or source files shown in the Source window and their program units,
LIST is equivalent to LISTINGS which is equivalent to SOURCES. See
[Command (Full-Screen Mode)” on page 289|for additional information.

Lists the currently defined breakpoints, including the action taken when the
specified breakpoint is activated.

A\
A

»»—LIST ;
La ’
T

I:EN/-\BLED —ALLOCATE
DISABLED —APPEARANCE

—CALL

—CHANGE

—DELETE

—ENTRY

—EXIT

—GLOBAL: ALLOCATE
—APPEARANCE—
—CALL
—DELETE——
—ENTRY
—EXIT
—LABEL
—LINE
—LOAD:
—PATH
—STATEMENT—

—LABEL

—LINE

—LOAD

—OCCURRENCE

—PATH

—STATEMENT

—TERMINATION

AT_command
The syntax of the AT command must be complete except that the every_clause
and command items are omitted. See [Table 9 on page 208|for a list of valid
AT commands.

ENABLED
Restricts the list to enabled breakpoints. The default is to list both enabled and
disabled breakpoints.

DISABLED
Restricts the list to disabled breakpoints. The default is to list both enabled and
disabled breakpoints.

Chapter 13. Debug Tool Commands 273

LIST Command

ALLOCATE
Lists currently defined AT ALLOCATE breakpoints.

APPEARANCE
Lists currently defined AT APPEARANCE breakpoints.

CALL
Lists currently defined AT CALL breakpoints.

CHANGE
Lists currently defined AT CHANGE breakpoints. This displays the storage
address and length for all AT CHANGE subjects, and shows how they were
specified (if other than by the %STORAGE function).

DELETE
Lists currently defined AT DELETE breakpoints.

ENTRY
Lists currently defined AT ENTRY breakpoints.

EXIT
Lists currently defined AT EXIT breakpoints.

GLOBAL
Lists currently defined AT GLOBAL breakpoints for the specified AT-condition.

LABEL
Lists currently defined AT LABEL breakpoints.

LINE
Lists currently defined AT LINE or AT STATEMENT breakpoints. LINE is
equivalent to STATEMENT.

LOAD
Lists currently defined AT LOAD breakpoints.

OCCURRENCE
Lists currently defined AT OCCURRENCE breakpoints.

PATH
Lists currently defined AT PATH breakpoints.

STATEMENT
Is equivalent to LINE.

TERMINATION
Lists currently defined AT TERMINATION breakpoint.

If the AT command type (for example, LOAD) is not specified, LIST AT lists all
currently defined breakpoints (both DISABLEd and ENABLEGJ).

274 Debug Tool/VSE VIR1 User's Guide and Reference

LIST CALLS

LIST Command

Usage Note:

e To display a global breakpoint, you can specify an asterisk (*) with the

Examples:

LIST AT command or you can specify a LIST AT GLOBAL command.
For example, if you want to display an AT ENTRY * breakpoint, specify:

LIST AT ENTRY =*;
or
LIST AT GLOBAL ENTRY;

If you have only a global breakpoint set and you specify LIST AT
ENTRY without the asterisk (*) or GLOBAL keyword, you get a
message saying there are no such breakpoints.

Display information about enabled breakpoints defined at block entries.
LIST AT ENABLED ENTRY;

Display breakpoint information for all disabled AT CHANGE breakpoints
within the currently executing program.

LIST AT DISABLED CHANGE;

The current programming language setting is C. Here are some
assorted LIST AT commands.

Display breakpoint information for any breakpoint set at line 22 of the
program.
LIST AT LINE 22;

Display breakpoint information for the breakpoint set at occurrence of
the SIGSEGV condition.

LIST AT OCCURRENCE SIGSEGV;

Display breakpoint information for the breakpoint set to activate on a
change to the structure structure.un.m.

LIST AT CHANGE structure.un.m;

Displays the dynamic chain of active blocks. For languages without block structure,
this is the CALL chain.

»»—LIST—CALLS—;

\ 4
A

Usage Notes:

For programs containing interlanguage communication (ILC), routines
from previous enclaves are only listed if they are written in a language
that is active in the current enclave.

If the enclave was created with the system() function, compile units in
parent enclaves will not be listed.

Chapter 13. Debug Tool Commands 275

LIST Command

Example:

Display the current dynamic chain of active blocks.
LIST CALLS;

LIST CURSOR (Full-Screen Mode)

Provides a cursor controlled method for displaying variables, structures, and arrays.
It is most useful when assigned to a PF key.

CURSOR
»»—LIST |— 1

\ 4
A

Usage Notes:

e Cursor pointing can be used by typing the LIST CURSOR command on
the command line and moving the cursor to a variable in the source
window before pressing Enter, or by moving the cursor and pressing a
PF key with the LIST CURSOR command assigned to it.

e When using the LIST CURSOR command for a variable that is located
by the cursor position, the variable's name cannot be split across
different lines of the source listing.

Example:

Display the value of the variable at the current cursor position.
LIST CURSOR

LIST Expression

Displays values of expressions.

\ 4
A

»»—| IST expression :
TITLED— L e J
L UNTITLED— (—[expression)
TITLED
L]

TITLED
Displays each expression in the list with its value. For PL/I, this is the default.
For C, this is the default for expressions that are /lvalues. For COBOL, this is
the default except for expressions consisting of only a single constant.

If TITLED is issued with no keyword specified, all variables in the currently
qualified block are listed.

*(C and COBOL)
Lists all variables in the currently qualified compile unit.

UNTITLED
Lists expression values without displaying the expressions themselves. For C,
this is the default for expressions that are not /values. For COBOL, this is the
default for expressions consisting of only a single constant.

276 Debug Tool/VSE VIR1 User's Guide and Reference

LIST Command

expression
A valid Debug Tool expression in the current programming language; see
FExpression” on page 202

e For the LIST command, an expression also includes character strings
enclosed in either double (") or single (') quotes, depending on the current
programming language.

e In C and COBOL, expressions containing parentheses () must be enclosed
in another set of parentheses when used with the LIST command. For
example, LIST ((x +y) / z);.

e In COBOL, an expression can be the GROUP keyword followed by a
reference. If specified, the GROUP keyword causes the reference to be
displayed as if it were an elementary item. If GROUP is specified for an
elementary item, it has no effect. The operand of a GROUP keyword can
only be a reference (expressions are not allowed). For example, LIST
TITLED GROUP y;.

Usage Notes:

e If LIST TITLED * is specified and your compile unit is large, slow
performance might result.

e When using LIST TITLED with no parameters within the PL/I compile
unit, only the first element of any array will be listed. If the entire array
needs to be listed, use LIST and specify the array name (that is, LIST
array, where array is the name of an array).

Examples:

e Display the values for variables size and r and the expression
¢ + r, with their respective names.

LIST TITLED (size, r, c + r);

e Display the COBOL references as if they were elementary items. The
current programming language setting is COBOL.

LIST (GROUP x OF z(1,2), GROUP a, w);

e Display the value of the Debug Tool variable %ADDRESS.
LIST %ADDRESS;

LIST FREQUENCY

Lists statement execution counts.

\ 4
A

(_E; tatement_i d_rangeJ—) —

*

»—LIST—FREQUENCY—EStatement_id_range 5

statement_id_range
A valid statement id or statement id range; see [‘Statement_Id_Range and|

[Stmt Id Spec” on page 204}

Chapter 13. Debug Tool Commands 277

LIST Command

LIST LAST

* Lists frequency for all statements in the currently qualified compile unit. If
currently executing at the AT Termination breakpoint where there is no
qualification available, it will list frequency for all statements in all the compile
units in the terminating enclave where frequency data exists.

Note: See also ['SET FREQUENCY” on page 310}

Examples:

 List frequency for statements 1-20.
LIST FREQUENCY 1 - 20;

 List frequency for all statements in the currently qualified compile unit.
LIST FREQUENCY =*;

e List frequency for all statements in all compilation units.
AT TERMINATION LIST FREQUENCY *;

Displays a list of recent entries in the history table.

»»—LIST HISTORY ; ><
[LAST] J LINES
integer PATHS
STATEMENTS—
integer

Specifies the number of most recently processed breakpoints and conditions
displayed.

HISTORY
Displays all processed breakpoints and conditions.

LINES
Displays processed statement or line breakpoints. LINES is equivalent to
STATEMENTS.

PATHS
Displays processed path breakpoints.

STATEMENTS
Is equivalent to LINES.

Note: See also ['SET HISTORY” on page 311|

Examples:

» Display all processed path breakpoints in the history table.
LIST PATHS;

e Display all program breakpoints and conditions for the last five times
Debug Tool gained control.

LIST LAST 5 HISTORY;

278 Debug Tool/VSE VIR1 User's Guide and Reference

LIST Command

LIST LINE NUMBERS

LIST LINES

LIST MONITOR

LIST NAMES

See [‘LIST STATEMENT NUMBERS” on page 282|

See [‘LIST STATEMENTS” on page 283}

Lists all or selected members of the current set of MONITOR commands.

»»—LIST—MONITOR

\4
A

|—integer B

- integer‘J

integer
An unsigned integer identifying a MONITOR command. If two integers are
specified, the first must not be greater than or equal to the second. If omitted,
all MONITOR commands are displayed.

Usage Note:

e When the current programming language setting is COBOL, blanks are
required around the hyphen (-). Blanks are optional for C.

Example:

List the fifth through the seventh commands currently being monitored.
LIST MONITOR 5 - 7;

Lists the names of variables, programs, or Debug Tool procedures. If LIST NAMES
is issued with no keyword specified, the names of all program and session
variables that can be referenced in the current programming language and that are
visible to the currently qualified block are displayed. A subset of the names can be
specified by supplying a pattern to be matched.

»»— IST—NAMES B N
pattern —BLOCK block_spec
Ecu_spec

(—{[’b Zock_spec}l—) —!
cu_spec
—CUS

—PROCEDURES
—PROGRAMS
—TEST

pattern
The pattern searched for, conforming to the current programming language
syntax for a character string constant. The pattern length cannot exceed 128
bytes, excluding the quotes.

If the DBCS setting is ON, the pattern can contain DBCS characters. DBCS
shift codes are not considered significant characters in the pattern. Within the
pattern, an SBCS or DBCS asterisk represents a string of zero or more

Chapter 13. Debug Tool Commands 279

LIST Command

insignificant SBCS or DBCS characters. As many as eight asterisks can be
included in the pattern, but adjacent asterisks are equivalent to a single
asterisk.

Some examples of possible strings follow:

Cc COBOL PL/I
IIABCII ||A5|| 1 MYI
|A5|

Pattern matching is not case-sensitive outside of DBCS. Both the pattern and
potential names outside of shift codes are effectively uppercased, except when
the current programming language setting is C. Letters in the pattern must be
the correct case when the current programming language setting is C.

BLOCK
Displays variable names that are defined within one or more specified blocks.

block_spec
A valid block specification; see [Block_Spec” on page 200

cu_spec
A valid compile unit specification; see [‘CU_Spec” on page 201| cu_spec
can be used to list the variable and function names that are defined within
the specified compile unit.

Ccus
Displays the compile unit names. CUS is equivalent to PROGRAMS.

PROCEDURES
Displays the Debug Tool procedure names.

PROGRAMS
Is equivalent to CUS.

TEST
Displays the Debug Tool session variable names.

Usage Notes:
e LIST NAMES CUS applies to compile unit names.

e LIST NAMES TEST shows only those session variable names that can
be referenced in the current programming language.

e The output of LIST NAMES without any options depends on both the
current qualification and the current programming language setting. If
the current programming language differs from the programming
language of the current qualification, the output of the command shows
only those session variable names that can be referenced in the current
programming language.

e For structures, the pattern is tested against the complete name, hence
"B" is not satisfied by "C OF B OF A" (COBOL).

280 Debug Tool/VSE VIR1 User's Guide and Reference

LIST Command

Examples:

* Display all compile unit names that begin with the letters "MY" and end
with "5". The current programming language setting is either C or
COBOL.

LIST NAMES "MY=*5" PROGRAMS;

e Display the names of all the Debug Tool procedures that can be
invoked.

LIST NAMES PROCEDURES;

e Display the names of variables whose names begin with 'R' and are in
the mainprog block. The current programming language setting is
COBOL.

LIST NAMES 'R*' BLOCK (mainprog);

LIST ON (PL/I)

Lists the action (if any) currently defined for the specified PL/I conditions.

\ 4
A

»>—L IST—ON
l—pl i_condit ionJ

pli_condition
A valid PL/I condition specification. If omitted, all currently defined ON
command actions are listed. See ['ON Command (PL/l)” on page 287

Example:

List the action for the ON ZERODIVIDE command.
LIST ON ZERODIVIDE;

LIST PROCEDURES
Lists the commands contained in the specified Debug Tool PROCEDURE
definitions.

\4
A

name

(—¥ pame—L—)—

»—L IST—PROCEDURES t :

name
A valid Debug Tool procedure name. If no procedure name is specified, the
commands contained in the currently running procedure are displayed. If no
procedure is currently running, an error message is issued.

Chapter 13. Debug Tool Commands 281

LIST Command

Examples:

¢ Display the commands in the Debug Tool procedure p2.
LIST PROC p2;

e List the procedures abc and proc7.
LIST PROCEDURES (abc, proc7);

LIST REGISTERS

Displays the current register contents.

»>—L IST—REGISTERS ; >«
LONG
—E%—FLOATING
SHORT '—REGISTERS—‘
REGISTERS
Displays the general-purpose registers
LONG
Displays the decimal value of the long-precision floating-point registers.
SHORT
Displays the decimal value of the short-precision floating-point registers.
FLOATING

Displays the long-precision floating-point registers.
Examples:

e Display the general-purpose registers at the point of a program
interruption:

LIST REGISTERS;

» Display the floating-point registers.
LIST FLOATING REGISTERS;

LIST STATEMENT NUMBERS

Lists all statement or line numbers that are valid locations for an AT LINE or AT
STATEMENT breakpoint.

A\
A

»»—LIST |_LINE . statement_id_range—;
STATEMENT

NUMBERS
Displays the statement numbers that can be used to set STATEMENT
breakpoints, assuming the compile options used to generate statement hooks
were specified at compile time. The list can also be used for the GOTO
command, however, you might not be able to GOTO all of the statement
numbers listed.

block_spec
A valid block specification; see [Block_Spec” on page 200l This operand
lists all statement or line numbers in the specified block.

282 Debug Tool/VSE VIR1 User's Guide and Reference

LIST Command

cu_spec
A valid compile unit specification; see ['CU_Spec” on page 201} For C
programs, cu_spec can be used to list the statement numbers that are
defined within the specified compile unit before the first function definition.

statement_id_range
A valid statement id or statement id range; see [‘Statement |d Range and|
[Stmt_Id_Spec” on page 204}

Examples:
e List the statement or line numbers in the currently qualified block.
LIST STATEMENT NUMBERS;

¢ Display the statement or line number of every statement in block
earnings.

LIST STATEMENT NUMBERS earnings;

LIST STATEMENTS

Lists one or more statements or lines from a source file. It can be used in
full-screen mode to copy a portion of a source listing or source file to the log.

\ 4
A

»»—LIST |_LINE u statement_id_range—;
STATEMENT

statement_id_range
A valid statement id or statement id range in the same block or different blocks;
see|‘Statement_Id_Range and Stmt_Id_Spec” on page 204

Usage Notes:

* The specified lines are displayed in the same format as they would
appear in the full-screen Source window, except that wide lines are
truncated.

¢ You might need to specify a range of line numbers to ensure that
continued statements are completely displayed.

¢ This command is not to be confused with the LIST LAST
STATEMENTS command.

Examples:

* List lines 25 through 30 in the source file associated with the currently
qualified compile unit.

LIST LINES 25 - 30;

e List statement 100 from the current program listing file.
LIST STATEMENT 100;

LIST STORAGE

Displays the contents of storage at a particular address in hex format.

»»—LIST—STORAGE

A\
A

|—(address)—| ;
_EreferenceJ |—,—integer—l

Chapter 13. Debug Tool Commands 283

MONITOR Command

address
The starting address of storage to be watched for changes. This must be a
hex constant: Ox in C, Hin COBOL (using either double (") or single (')
quotes), or PXin PL/I.

reference
A valid Debug Tool reference in the current programming language; see
[‘References” on page 203

For C, if the referenced variable is an array, Debug Tool displays the storage at
the address of that array. However, if the referenced variable is a pointer,
Debug Tool displays the storage at the address given by that pointer.

integer
The number of bytes of storage displayed. The default is 16 bytes.

Usage Notes:

¢ Using Debug Tool, cursor pointing can be used by typing the LIST
STORAGE command on the command line and moving the cursor to a
variable in the Source window before pressing Enter, or by moving the
cursor and pressing a PF key with the LIST STORAGE command
assigned to it.

e When using the LIST STORAGE command in Debug Tool for a variable
that is located by the cursor position, the variable's name cannot be
split across different lines of the source listing.

e If no operand is specified with LIST STORAGE, the command is
cursor-sensitive.

Examples:
» Display the first 64 bytes of storage beginning at the address of variable
table.
LIST STORAGE (table, 64);

 Display 16 bytes of storage at the address given by pointer table(1).
LIST STORAGE (table(1));

e Display the 16 bytes contained at locations 20CD0-20CDF. The current
programming language setting is COBOL.
LIST STORAGE (H'20CD@');

e Display the 16 bytes contained at locations 20CD0-20CDF. The current
programming language setting is PL/I.
LIST STORAGE ('20CDO'PX);

MONITOR Command

The MONITOR command defines or redefines a command whose output is
displayed in the Monitor window (full-screen mode), or log file (batch mode). Only
DESCRIBE, LIST, Null, and QUERY command values are maintained.

|—G LOBAL
»»—MONITOR

\ 4
A

command
l—int‘egerJ

|—LOCAL B

cu_specJ

284 Debug Tool/VSE VIR1 User's Guide and Reference

GLOBAL

MONITOR Command

Specifies that the monitor definition is global. That is, it is not associated with a
particular compile unit.

LOCAL

Specifies that the monitor definition is local to a specific compile unit. Using
Debug Tool, the specified output is displayed only when the current
qualification is within the associated compile unit.

cu_spec

integer

A valid compile unit specification; see ['CU Spec” on page 201} This
specifies the compile unit associated with the monitor definition. The
default is the currently qualified compile unit.

An integer in the range 1 to 99, indicating what command in the list is replaced
with the specified command and the order that the monitored commands are
evaluated. If omitted, the next monitor integer is assigned. An error message
is displayed if the maximum number of monitoring commands already exists.

command

A DESCRIBE, LIST, Null, or QUERY command whose output is displayed in
the Monitor window, or log file.

Usage Notes:

¢ A monitor number identifies a global monitor command, a local monitor

command, or neither.

Using Debug Tool, monitor output is presented in monitor number
sequence.

If a number is provided and a command omitted, a null command is
inserted on the line corresponding to the number in the Monitor window.
This reserves the monitor number.

You can only specify a monitor number that is at most one greater than
the highest existing monitor number.

The MONITOR command displays up to a maximum of 1000 lines of
output in the Monitor window.

Replacement only occurs if the command identified by the monitor
number already exists.

The MONITOR LIST command does not allow the TITLED, and
UNTITLED options.

When using the MONITOR LIST command, simple references (or C
Ivalues) display identifying information with the values, whereas
expressions and literals do not.

The GLOBAL and LOCAL keywords also affect the default qualification
for evaluation of an expression. GLOBAL indicates that the default
qualification is the currently executing point in the program. LOCAL
indicates that the default qualification is to the compile unit specified.

Chapter 13. Debug Tool Commands 285

MOVE Command

Examples:

* Replace the 10th command in the monitor list with QUERY LOCATION.
This is a global definition; therefore, it is always present in the monitor
output.

MONITOR 10 QUERY LOCATION;

¢ Add a monitor command that displays the variable abc and is local to
compile unit myprog. The monitor number is the next available number.
MONITOR LOCAL myprog LIST abc;

MOVE Command (COBOL)

The MOVE command transfers data from one area of storage to another. The
keywords cannot be abbreviated.

A\
A

»»—MOV ETre fe renE—TO—re ference—;

literal

reference
A valid Debug Tool COBOL reference.

literal
A valid COBOL literal.

Usage Notes:

 If Debug Tool was invoked because of a computational condition or an
attention interrupt, using an assignment to set a variable might not give
expected results. This is due to the uncertainty of variable values within
statements as opposed to their values at statement boundaries.

¢ MOVE assigns a value only to a single receiver; unlike COBOL, multiple
receiver variables are not supported.

e The COBOL CORRESPONDING phrase is not supported.

 Only the sender/receiver combinations listed in [Appendix D, “Using|
COBOL Reference Information with Debug Tool” on page 349, are
supported.

Examples:
¢ Move the string constant "Hi There" to the variable field.
MOVE "Hi There" TO field;
* Move the value of session variable temp to the variable b.
MOVE temp TO b;

e Move a DBCS value to the DBCS variable dbcs_field.
MOVE G'DBCS VALUE"TO dbcs_field;

286 Debug Tool/VSE VIR1 User's Guide and Reference

ON Command

Null Command

The Null command is a semicolon written where a command is expected. It is
used for such things as an IF command with no action in its THEN clause.

[

Example:

A\
A

Do nothing if array[x] > 0, otherwise set a to 1. The current programming

la

nguage setting is C.

if (array[x] > 0); else a = 1;

ON Command (PL/)

The ON command establishes the actions to be executed when the specified PL/I
condition is raised. This command is equivalent to AT OCCURRENCE; see page

»>—ON—j

—CONDITION—(—condition_name—)

ENDFILE——
ENDPAGE——
KEY
NAME
RECORD
TRANSMIT
UNDEFINEDFILE—
—AREA:

—(—file_reference—)—

—CONVERSION

—ERROR

—FINISH

—FIXEDOVERFLOW

—OVERFLOW
—SIZE

—STRINGRANGE

—STRINGSIZE

—SUBSCRIPTRANGE

—UNDERFLOW

—ZERODIVIDE

condition_name
A valid PL/I CONDITION condition name.

file_reference
A valid PL/I file constant or file variable (can be qualified).

command
A valid Debug Tool command.

A\
A

command-

Chapter 13. Debug Tool Commands 287

ON Command

Usage Notes:

Examples:

You must abide by the PL/I restrictions for the particular condition. See
IBM PL/I for VSE/ESA Language Reference for an explanation of the
restrictions.

An ON action for a specified PL/I condition remains established until:

— Another ON command establishes a new action for the same
condition. In other words, the breakpoint is replaced.

— A CLEAR command removes the ON definition.

The ON command occurs before any existing ON-unit in your
application program. The ON-unit is processed after Debug Tool
returns control to the language.

The following are accepted PL/I abbreviations for the PL/I condition
constants:

FIXEDOVERFLOW or FOFL

OVERFLOW or OFL

STRINGRANGE or STRG

STRINGSIZE or STRZ

SUBSCRIPTRANGE or SUBRG
UNDEFINEDFILE([file_reference]) or UNDF([file_reference])
UNDERFLOW or UFL

ZERODIVIDE or zZDIV

The preferred form of the ON command is AT OCCURRENCE,
however, ON is recognized and processed. ON should be considered a
synonym of AT OCCURRENCE. Any ON commands entered are
logged as AT OCCURRENCE commands.

Display a message if a division by zero is detected.

ON ZERODIVIDE BEGIN;
LIST 'A zero divide has been detected';
END;

Display and patch the error character when converting character data to
numeric.

Given a PL/I program that contains the following statements:
DECLARE i FIXED BINARY(31,0);

i='1s3';

The following Debug Tool command would display and patch the error
character when converting the character data to numeric:

ON CONVERSION

BEGIN;
LIST (%STATEMENT, ONCHAR);
ONCHAR = '0';
GO;

END;

'1s3' cannot be converted to a binary number so CONVERSION is
raised. The ON CONVERSION command lists the offending statement

288 Debug Tool/VSE VIR1 User's Guide and Reference

PANEL Command

number and the offending character: 's'. The data will be patched by
replacing the 's' with a character zero, 0, and processing will continue.

PANEL Command (Full-Screen Mode)
The PANEL command displays special panels. The PANEL keyword is optional.

The PANEL command cannot be used in a command list, any conditional
command, or any multiway command.

»> COLORS 5 >«
|—PANELJ LAYOUT—L—_I—
RESET
LISTINGS
PROFILE
SOURCES
COLORS

Displays the Color Selection Panel that allows the selection of color,
highlighting, and intensity of the various fields of the Debug Tool session panel.

LAYOUT
Displays the Window Layout Selection Panel that controls the configuration of
the windows on the Debug Tool session panel.

RESET
Restores the relative sizes of windows for the current configuration, without
displaying the window layout panel. For configurations 1 and 4, the three
windows are evenly divided. For other configurations, the point where the
three windows meet is approximately the center of the screen.

See [‘Changing Session Panel Window Layout” on page 95 ffor details on
the six configuration options.

LISTINGS
Displays the Source Identification Panel, where associations are made between
source listings or source files shown in the Source window and their program
units. LISTINGS is equivalent to SOURCES.

Debug Tool provides the Source Identification Panel to maintain a record of
compile units associated with your program, as well as their associated source
or listing.

You can also make source or listings available to Debug Tool by entering their
names on the Source Identification Panel.

The Source Identification Panel associates compile units with the names of
their respective listing or source files and controls what appears in the Source
window. To explicitly name the compile units being displayed in the Source
window, access the Source Identification Panel by entering the PANEL
LISTINGS or PANEL SOURCES command. [Figure 33 on page 290 is an
example of the panel.

Chapter 13. Debug Tool Commands 289

PANEL Command

Source Identification Panel

Command ===>

Compile Unit Listings/Source File Display
DBKP515 (DBKP515.LIST) Y
Enter QUIT to return with current settings saved.

CANCEL to return without current settings saved.
UP/DOWN to scroll up and down.

Figure 33. The Source Identification Panel

Compile Unit

Is the name of a valid compile unit currently known to Debug Tool. New
compile units are added to the list as they become known.

Listing/Source File

Is the name of the listing or source file containing the compilation unit to be
displayed in the Source window. If the file is a listing, only source program
statements are shown. The minimum required is the compile unit name.
The default file specification is pgmname.LIST (COBOL and PL/I) or
pgmname.C, where pgmname is the name of your program.

Display

Is a flag that specifies whether the listing or source is to be displayed in the
Source window.

To display a listing view, take the following steps:

For a C program, catalog the source program in a sublibrary or write the
source program to a SAM ESDS file or a sequential disk file. When you
compile the C program, you should use the compile-time INFILE option to
specify this sublibrary member name or filename.

For a COBOL or PL/I program, compile the program and write the
compile-time listing to a sublibrary member, a SAM ESDS file, or a
sequential disk file.

Make sure the source or listing file is available and accessible to Debug
Tool.

Set the Display field on the Source Identification panel to Y for the compile
unit. To save time and avoid displaying listings or source you do not want
to see, specify N.

If any of these conditions are not satisfied, the Source window remains empty
until control reaches a compile unit where the conditions are satisfied.

You can change the source or source listing associated with a compile unit by
entering the new name over the source or source listing file displayed in the
LISTING/SOURCE FILE field.

Note: The new name must be followed by at least one blank.

After you modify the panel, return to the Debug Tool session panel either by
issuing the QUIT command, or by pressing the QUIT PF key.

290 Debug Tool/VSE VIR1 User's Guide and Reference

PERFORM Command

PROFILE
Displays the Profile Settings Panel, where parameters of a full-screen Debug
Tool session can be set.

SOURCES
Is equivalent to LISTINGS.

Usage Notes:

e All information on the panels invoked by the PANEL command is saved
when QUIT is used to leave them. Saving the changes to the specified
panels in this manner returns you to your Debug Tool session with the
current settings in effect. In addition, CANCEL can be used to leave the
panels without saving the changes.

¢ On normal termination, Debug Tool saves certain panel settings in a
sublibrary member userid. SAFE. See [‘Customizing Settings” on pagel
[99 For details on changing and saving the settings for each of the
panels.

e The PANEL command is not logged.
Examples:

¢ Display the color and attribute panel.
PANEL COLORS;

* Reset the relative sizes of the windows for the current layout
configuration.
PANEL LAYOUT RESET;

PERFORM Command (COBOL)

The PERFORM command transfers control explicitly to one or more statements and
implicitly returns control to the next executable statement after execution of the
specified statements is completed. The keywords cannot be abbreviated.

Simple:

>>—PERFORM—W—END-PERFORM—;

\4
A

command
A valid Debug Tool command.

Repeating:
»»>—PERFORM

v

BEFORE
N o TEST E __|_‘
WITH AFTER

[
| 2

UNTIL

\ 4

l—VARY ING—reference—FROM—reference—BY—re ferenceJ

»—condit ion—W—END-PERFORM—;

\ 4
A

Chapter 13. Debug Tool Commands 291

Prefix Commands

reference
A valid

condition

Debug Tool COBOL reference.

A simple relation condition.

command
A valid

Debug Tool command.

Usage Notes:

Examples:

A constant as a reference is allowed only on the right side of the FROM
and BY keywords.

Index-names and floating point variables cannot be used as the
VARYING references.

Index-names are not supported in the BY phrase.

Only in-line PERFORMSs are supported (but the PERFORMed command
can be a Debug Tool procedure invocation).

The COBOL AFTER phrase is not supported.

See IBM COBOL for VSE/ESA Language Reference for an explanation
of the following COBOL keywords:

AFTER
BEFORE
BY

FROM
TEST
UNTIL
VARYING
WITH

Set a breakpoint at statement number 10 to move the value of variable
a to the variable b and then list the value of x.

AT 10 PERFORM
MOVE a TO b;
LIST (x);

END-PERFORM;

List the value of height for each even value between 2 and 30,
including 2 and 30.

PERFORM WITH TEST AFTER
VARYING height FROM 2 BY 2
UNTIL height = 30
LIST height;
END-PERFORM;

Prefix Commands (Full-Screen Mode)

The Prefix commands apply only to source listing lines and are typed into the prefix
area in the Source window. For details, see the section corresponding to the
command name.

The various forms of the Prefix commands are summarized in[Table 13 on
page 293

292 Debug Tool/VSE VIR1 User's Guide and Reference

PROCEDURE Command

Table 13. Summary of Prefix Commands

AT Prefix defines a statement breakpoint via the Source window prefix area.

CLEAR Prefix clears a breakpoint via the Source window prefix area.

DISABLE Prefix disables a breakpoint via the Source window prefix area.

ENABLE Prefix enables a disabled breakpoint via the Source window prefix area.

QUERY Prefix queries what statements have breakpoints via the Source window
prefix area.

SHOW Prefix specifies what relative statement or verb within the line is to have its

frequency count shown in the suffix area.

PROCEDURE Command

The PROCEDURE command allows the definition of a group of commands that can
be accessed using the CALL procedure command. The CALL command is the only
way to perform the commands within the PROCEDURE. PROCEDURE definitions
remain in effect for the entire debug session.

The PROCEDURE keyword can only be abbreviated as PROC. PROCEDURE
definitions can be subcommands of other PROCEDURE definitions. The name of a
nested procedure has only the scope of the containing procedure. Session
variables cannot be declared within a PROCEDURE definition.

In addition, a procedure must be defined before it is CALLed.

»»>—name— :—PROCEDURE—; ! command END—;

v
A

name
A valid Debug Tool procedure name. It must be a valid identifier in the current
programming language. The maximum length is 31 characters.

command
A valid Debug Tool command other than a declaration or PANEL command.

Usage Notes:

e Since the Debug Tool procedure names are always uppercase, the
procedure names are converted to uppercase even for programming
languages that have mixed-case symbols.

e If a GO or STEP command is issued within a procedure or a nested
procedure, any statements following the GO or STEP in that procedure
and the containing procedure are ignored. If control returns to Debug
Tool, it returns to the statement following the CALL of the containing
PROCEDURE.

e |t is recommended that procedure names be chosen so that they are
valid for all possible programming language settings throughout the
entire Debug Tool debugging session.

Chapter 13. Debug Tool Commands 293

QUERY Command

Examples:

¢ When procedure procl is called, the values of variables x, y, and z are
displayed.

procl: PROCEDURE; LIST (x, y, z); END;

» Define a procedure named setat34 that sets a breakpoint at statement
34. Procedure setat34 contains a nested procedure Tister that lists
current statement breakpoints. Procedure Tister can only be called
from within setat34.

setat34: PROCEDURE;
AT 34;
lister: PROCEDURE;
LIST AT STATEMENT;
END;
CALL Tister;
END;

QUERY Command

The QUERY command displays the current value of the specified Debug Tool
setting, the current setting of all the Debug Tool settings, or the current location in
the suspended program.

For an explanation of the Debug Tool settings, see the SET command
[Command” on page 302).

294 Debug Tool/VSE VIR1 User's Guide and Reference

»»—QUERY—

QUERY Command

—CHANGE

—COLORS

—COUNTRY
—DBCS

—DEFAULT—LISTINGS
—DEFAULT—SCROLL
—DEFAULT—WINDOW
—ECHO

—EQUATES

EXECUTE
- FREQUENCY

—HISTORY

—INTERCEPT

—KEYS

—LOCATION

—LOG

—LOG—NUMBERS——
—MONITOR—NUMBERS——
—MSGID

LANGUAGE—
|—NAT IONA LJ
—PACE

—PFKEYS

—PROGRAMMING—LANGUAGE—

—PROMPT

—QUALIFY
—REFRESH

—REWRITE

—SCREEN

—SCROLL—DISPLAY
—SETS

—SOURCE

—SUFFIX

—TEST

CHANGE

Displays the current CHANGE setting.

—WARNING

COLORS (Full-Screen Mode)

Displays
COUNTRY

Displays the current COUNTRY setting.

DBCS
Displays

the current COLOR setting.

the current DBCS setting.

DEFAULT LISTINGS
Displays the current DEFAULT LISTINGS setting.

DEFAULT SCROLL (Full-Screen Mode)

Displays the current DEFAULT SCROLL setting.

DEFAULT WINDOW (Full-Screen Mode)

Displays the current DEFAULT WINDOW setting.

ECHO
Displays

the current ECHO setting.

Chapter 13. Debug Tool Commands

\ 4
A

295

QUERY Command

EQUATES
Displays the current EQUATE definitions.

EXECUTE
Displays the current EXECUTE setting.

FREQUENCY
Displays the current FREQUENCY setting.

HISTORY
Displays the current HISTORY setting and size.

INTERCEPT
Displays the current INTERCEPT setting.

KEYS (Full-Screen Mode)
Displays the current KEYS setting.

LOCATION
Displays the statement identifier where execution is suspended. The current
statement identified by QUERY LOCATION has not yet executed. If
suspended at a breakpoint, the description of the breakpoint is also displayed.

LOG
Displays the current LOG setting.

LOG NUMBERS (Full-Screen Mode)
Displays the current LOG NUMBERS setting.

MONITOR NUMBERS (Full-Screen Mode)
Displays the current MONITOR NUMBERS setting.

MSGID
Displays the current MSGID setting.

NATIONAL LANGUAGE
Displays the current NATIONAL LANGUAGE setting.

PACE (Full-Screen Mode)
Displays the current PACE setting.

PFKEYS (Full-screen Mode)
Displays the current PFKEY definitions.

PROGRAMMING LANGUAGE
Displays the current PROGRAMMING LANGUAGE setting.

PROMPT (Full-Screen Mode)
Displays the current PROMPT setting.

QUALIFY
Displays the current QUALIFY BLOCK setting.

REFRESH (Full-Screen Mode)
Displays the current REFRESH setting.

REWRITE
Displays the current REWRITE setting. This setting is not supported in batch
mode.

296 Debug Tool/VSE VIR1 User's Guide and Reference

QUIT Command

SCREEN (Full-Screen Mode)
Displays the current SCREEN setting.

SCROLL DISPLAY (Full-Screen Mode)
Displays the current SCROLL DISPLAY setting.

SETS
Displays all current settings.

SOURCE
Displays the current SOURCE setting.

SUFFIX (Full-Screen Mode)
Displays the current SUFFIX setting.

TEST
Displays the current TEST setting.

WARNING (C)
Displays the current WARNING setting.

Examples:
e Display the current ECHO setting.
QUERY ECHO;
» Display all current settings.
QUERY SETS;

QUERY Prefix (Full-Screen Mode)

Queries what statements on a particular line have statement breakpoints when you
issue this command via the Source window prefix area.

»»—QUERY

\ 4
A

Usage Notes:

¢ When the QUERY Prefix command is issued, a sequence of characters
corresponding to the statements is displayed in the prefix area of the
Source window. If the statement contains a breakpoint, "*" is used, or
".", if it does not. If there are more than eight statements or verbs on
the line, and one or more past the eighth statement have breakpoints,
the eighth character of the map is replaced by a "+".

For example, a display of "..*." would indicate that four statements or
verbs begin on the line and the third one has a breakpoint defined.

e The QUERY Prefix command is not logged.

QUIT Command

The QUIT command ends a Debug Tool session and terminates your application.
If an expression is specified, Debug Tool sets the return code. In Full-Screen
mode QUIT also invokes a prompt panel (full-screen) that asks if you really want to
quit the debug session. In batch mode, the QUIT command ends the session
without prompting.

Chapter 13. Debug Tool Commands 297

RETRIEVE Command

\ 4
A

»»—QUIT

|—(—expression—)J

expression
A valid Debug Tool expression in the current programming language; see
[‘Expression” on page 202|

If expression is specified, this value is used as the application return code
value. The actual return code for the run is determined by the execution
environment.

Usage Notes:

e QUIT is always logged in a comment line. This makes it unnecessary
for you to "comment out" the QUIT to reuse the log file as a primary
commands file.

e If QUIT is issued from a Debug Tool commands file, no prompt is
issued. This applies to the Debug Tool preferences file, primary
commands file, and USE files.

e For PL/I, the expression will be converted to FIXED BINARY (31,0), if
necessary. In addition, if an expression is specified, it is used as if
there was an invocation of the PLIRETC built-in subroutine in your
program.

e For PL/I, the value of the expression must be nonnegative and less
than 1000.

Examples:

e End a Debug Tool session.
QUIT;

e End a Debug Tool session and use the value in variable x as the
application return code.
QUIT (x);

RETRIEVE Command (Full-Screen Mode)

The RETRIEVE command displays the last command entered on the command
line. For long commands this may only be the last line of the command.

COMMAND
»»—RETRIEVE [| H

\ 4
A

COMMAND
Retrieves commands. Any command retrieved to the command line can be
performed by pressing Enter. The retrieved command can also be modified
before it is performed. Successive RETRIEVE commands continue to display
up to 12 commands previously entered on the command line. This operand is
most useful when assigned to a PF key.

298 Debug Tool/VSE VIR1 User's Guide and Reference

SCROLL Command

Usage Note: The RETRIEVE command is not logged.

Example:

Retrieve the last line so that it can be reissued or modified.
RETRIEVE COMMAND;

RUN Command

The RUN command is synonymous to the GO command. See['GO Command” on

SCROLL Command (Full-Screen Mode)

The SCROLL command provides horizontal and vertical scrolling in full-screen
mode. Scroll commands can be made immediately effective with the IMMEDIATE
command. The SCROLL keyword is optional.

The Log, Monitor, or Source window will not wrap around when scrolled.

’—CU RSOR—
>> DOWN ; ><
L _ ’
SCROLL LEFT— CSR— LOG—
NEXT— DATA— EMONITOR—
RIGHT— HALF SOURCE—
Up—— integer—
MAX
PAGE——
—BOTTOM
—T0—integer
—TOP

DOWN
Scrolls the specified number of lines in a window toward the top margin of that
window. DOWN is equivalent to NEXT.

LEFT
Scrolls the specified number of columns in a window toward the right margin of
that window.

NEXT
Is equivalent to DOWN.

RIGHT
Scrolls the specified number of columns in a window toward the left margin of
that window.

UP
Scrolls the specified number of lines in a window toward the bottom margin of
that window.

CSR
Specifies scrolling based on the current position of the cursor in a selected
window. The window scrolls up, down, left, or right of the cursor position until
the character where the cursor is positioned reaches the edge of the window.

Chapter 13. Debug Tool Commands 299

SCROLL Command

300 Debug Tool/VSE V1

If the cursor is not in a window or if it is already positioned at the edge of a
window, a full-page scroll occurs.

DATA
Scrolls by one line less than the window size or by one character less than the
window size (if moving left or right).

HALF
Scrolls by half the window size.

integer
Scrolls the specified number of lines (up or down) or the specified number of
characters (left or right). Maximum value is 9999.

MAX
Scrolls in the specified direction until the limit of the data is reached. To scroll
the maximum amount, you must use the MAX keyword. You cannot scroll the
maximum amount by filling in the scroll amount field.

PAGE
Scrolls by the window size.

BOTTOM
Scrolls to the bottom of the data.

TO integer
Specifies that the selected window is to scroll to the given line (as indicated in
the prefix area of the selected window). This can be in either the UP or DOWN
direction (for example, if you are line 30 and issue "TO 20", it will return to line
20). Maximum value is 999999.

TOP
Scrolls to the top of the data.

CURSOR
Selects the window where the cursor is currently positioned.

LOG
Selects the session Log window.

MONITOR
Selects the Monitor window.

SOURCE
Selects the source listing window.

Usage Notes:

¢ |f you do not specify an operand with the DOWN, LEFT, NEXT, RIGHT,
or UP keywords, and the cursor is outside the window areas, the
window scrolled is determined by the current default window setting (if
the window is open) and the scroll amount is determined by the current
default scroll setting, shown in the SCROLL field on the Debug Tool
session panel. Default scroll and default window settings are controlled
by SET DEFAULT SCROLL and SET DEFAULT WINDOW commands.

e When the SCROLL field on the Debug Tool session panel is overtyped,
the equivalent SET DEFAULT SCROLL command is issued just as if
you had typed the command in directly from the command line (that is,
it is logged and retrievable).

R1 User's Guide and Reference

SELECT Command

e The SCROLL command is not logged.

e See also E‘SET DEFAULT SCROLL (Full-Screen Mode)” on page 307l

Examples:

e Scroll one page down in the window containing the cursor.
SCROLL DOWN PAGE CURSOR;

e Scroll the Monitor window 12 columns to the left.
SCROLL LEFT 12 MONITOR;

SELECT Command (PL/)

The SELECT command chooses one of a set of alternate commands.

If the reference can be satisfied by more than one of the WHEN clauses, only the
first one is performed. If there is no reference, the first WHEN clause containing an
expression that is true is executed. If none of the WHEN clauses are satisfied, the
command specified on the OTHERWISE clause, if present, is performed. If the
OTHERWISE clause should be executed and it is not present, a Debug Tool
message is issued.

»»—SELECT

v

.
t

|—(—r*eference—)J

\ 4
v

|—OTH ERWIS E—command—l

WHEN— (—Eéxpress ion]—) —command:

»—END—;

A\
A

reference
A valid Debug Tool PL/I scalar reference. An aggregate (array or structure)
cannot be used as a reference.

WHEN
Specifies that an expression or a group of expressions be evaluated and either
compared with the reference immediately following the SELECT keyword, or
evaluated to true or false (if reference is omitted).

expression
A valid Debug Tool PL/I expression.

command
A valid Debug Tool command.

OTHERWISE
Specifies the command to be executed when every test of the preceding
WHEN statements fails.

Chapter 13. Debug Tool Commands 301

SET Command

Example:

When sum is equal to the value of ctev, display a message. When sum is
equal to either fv or 0, display a message. If sum is not equal to the value
of either c+ev, fv, or 0, a Debug Tool error message is issued.

SELECT (sum);

WHEN (c + ev) LIST ('Match on when group number 1');
WHEN (fv, 0) LIST ('Match on when group number 2');

END;

SET Command

302

The SET command sets various switches that affect the operation of Debug Tool.
Except where otherwise specified, settings remain in effect for the entire debug

session.

The various forms of the SET command are summarized in Table 14.

Table 14 (Page 1 of 2). Summary of SET Commands

SET CHANGE controls the frequency of checking the AT CHANGE
breakpoints.

SET COLOR provides control of the color, highlighting, and intensity
attributes.

SET COUNTRY changes the current national country setting.

SET DBCS controls whether DBCS shift-in and shift-out codes are

recognized.

SET DEFAULT LISTINGS

defines a default sublibrary to be searched for program
source listings or source files.

SET DEFAULT SCROLL

sets the default scroll amount.

SET DEFAULT WINDOW

specifies what window is defaulted.

SET ECHO

controls whether GO and STEP commands are recorded in
the Log window.

SET EQUATE

equates a symbol to a string of characters.

SET EXECUTE

controls whether commands are performed or just syntax
checked.

SET FREQUENCY

controls whether statement executions are counted.

SET HISTORY

specifies whether entries to Debug Tool are recorded in the
history table.

SET INTERCEPT (C and
COBOL)

intercepts input to and output from specified files, displaying
prompts and output in the log.

SET KEYS

controls whether PF key definitions are displayed.

SET LOG

controls the logging of output and assignment to the log file.

SET LOG NUMBERS

controls whether line numbers are shown in the Log
window.

SET MONITOR NUMBERS

controls whether line numbers are shown in the Monitor
window.

SET MSGID

controls whether message identifiers are shown.

Debug Tool/VSE V1R1 User's Guide and Reference

SET CHANGE

SET Command

Table 14 (Page 2 of 2). Summary of SET Commands

SET NATIONAL

switches your application to a different run-time national

LANGUAGE language.

SET PACE specifies the maximum pace of animated execution.
SET PFKEY associates a Debug Tool command with a PF key.
SET PROGRAMMING sets the current programming language.

LANGUAGE

SET PROMPT controls the display of the current program location.
SET QUALIFY simplifies the identification of references and statement

numbers by resetting the point of view.

SET REFRESH

controls screen refreshing when the SCREEN setting is
ON.

SET REWRITE forces a periodic screen rewrite.

SET SCREEN controls how information is displayed on the screen.

SET SCROLL DISPLAY controls whether the scroll field is displayed.

SET SOURCE associates a source listing or source file with one or more
compile units.

SET SUFFIX controls the display of the Source window suffix area.

SET TEST overrides the initial run-time TEST options specified at
invocation.

SET WARNING controls display of the Debug Tool warning messages and

whether exceptions are reflected to the application program.

Controls the frequency of checking the AT CHANGE breakpoints. The initial setting

is STATEMENT/LINE.

STATEMENT—
r

»—SET—CHANGE

ALL———
BLOCK——
LINE
PATH

STATEMENT

\ 4
A

Specifies that the AT CHANGE breakpoints are checked at all statements.
STATEMENT is equivalent to LINE.

ALL

Specifies that the AT CHANGE breakpoints are checked at all statements,
block entry and exits, and path points.

BLOCK

Specifies that the AT CHANGE breakpoints are checked at all block entry and

exits.

LINE

Is equivalent to STATEMENT.

Chapter 13. Debug Tool Commands 303

SET Command

PATH
Specifies that the AT CHANGE breakpoints are checked at all path points.

Examples:

e Specify that AT CHANGE breakpoints are checked at all statements.

SET CHANGE;

» Specify that AT CHANGE breakpoints are checked at all path points.

SET CHANGE PATH;

SET COLOR (Full-Screen Mode)

Provides control of the color, highlighting, and intensity attributes when the
SCREEN setting is ON. The color, highlighting, and intensity keywords can be
specified in any order.

—CYCLE
»»—SET—COLOR >
BLUE BLINK HIGH
GREEN— NONE: |—LOW——I_
PINK: REVERSE—
RED—— UNDERLINE-
TURQUOISE—
WHITE———
YELLOW——
—CURSOR
COMMAND—LINE——7—;—
—LOG—LINES
—MONITOR: AREA
|—LINES—J

—PROGRAM—OQUTPUT

—SOURCE AREA
BREAKPOINTS—
CURRENT———
PREFIX
SUFFIX

—TARGET
l—FI ELDJ

—TEST——INPUT
Lourpur!
—TITLE—FIELDS
L EADERS

—TOFEOF
L warier—!
LW INDOW—HEADERS

CYCLE
Causes the color to change to the next one in the sequence of colors. The
sequence follows the order shown in the syntax diagram.

BLINK
Causes the characters to blink (if supported by the terminal).

NONE
Causes the characters to appear in normal type.

304 Debug Tool/VSE V1R1 User's Guide and Reference

SET Command

REVERSE
Transforms the characters to reverse video (if supported by the terminal).

UNDERLINE
Causes the characters to be underlined (if supported by the terminal).

HIGH
Causes screen colors to be high intensity (if supported by the terminal).

Low
Causes screen colors to be low intensity (if supported by the terminal).

CURSOR
Specifies that cursor pointing is used to select the field. Optionally, you can
type in the field name (for example, COMMAND LINE) as shown in the syntax
diagram.

COMMAND LINE
Selects the command input line (preceded by ===>).

LOG LINES
Selects the line number portion of the Log window.

MONITOR AREA
Selects the primary area of the Monitor window.

MONITOR LINES
Selects the line number portion of the Monitor window.

PROGRAM OUTPUT
Selects the application program output displayed in the Log window.

SOURCE AREA
Selects the primary area of the Source window.

SOURCE BREAKPOINTS
Selects the source prefix fields next to statements where breakpoints are set.

SOURCE CURRENT
Selects the line containing the source statement that is about to be performed.

SOURCE PREFIX
Selects the statement identifier column at the left of the source window.

SOURCE SUFFIX
Selects the frequency column at the right of the Source window.

TARGET FIELD
Selects the target of a FIND command in full-screen mode, if found.

TEST INPUT
Selects the Debug Tool input displayed in the Log window.

TEST OUTPUT
Selects the Debug Tool output displayed in the Log window.

TITLE FIELDS
Selects the information fields in the top line of the screen, such as current
programming language setting or the current location within the program.

Chapter 13. Debug Tool Commands 305

SET Command

SET COUNTRY

SET DBCS

TITLE HEADERS
Selects the descriptive headers in the top line of the screen, such as location.

TOFEOF MARKER
Selects the top-of-file and end-of-file lines in the session panel windows.

WINDOW HEADERS
Selects the header lines for the windows in the main session panel.
Examples:
e Set the Source window display area to yellow reverse video.
SET COLOR YELLOW REVERSE SOURCE AREA;

e Set the Monitor window display area to high intensity green.
SET COLOR HIGH GREEN MONITOR AREA;

Changes the current national country setting for the application program. It is
available only where supported by LE/VSE. The IBM-supplied initial country code
is US.

A\
A

»»—SET—COUNTRY—country_code—;

country_code
A valid two-letter set that identifies the country code used. The country code
can have one of the following values:

United States: US
Japanese: JP

Country codes cannot be truncated.

Usage Notes:
* This setting affects both your application and Debug Tool.

e At the beginning of an enclave, the settings are those provided by
LE/VSE or your operating system. For nested enclaves, the parent's
settings are restored upon return from a child enclave.

Example:

Change the current country code to correspond to Japan.
SET COUNTRY JP;

Controls whether shift-in and shift-out codes are interpreted on input and supplied
on DBCS output. SET DBCS is valid for all programming languages; however,
when used with C, it is always considered ON.

ON
»»—SET—DBCS [_|_J :
OFF

A\
A

306 Debug Tool/VSE V1R1 User's Guide and Reference

SET Command

ON
Interprets shift-in and shift-out codes.

OFF
Ignores shift-in and shift-out codes.

Example:

Specify that shift-in and shift-out codes are interpreted.
SET DBCS ON;

| CICS Only

Using SET DBCS ON under CICS may cause ATNI transaction abends. This is
because the CICS translator can generate undisplayable characters in the
parameter string for the EXEC Interface program. For example, a shift out
character is generated in the parameter string for the EXEC CICS RETURN
command.

With DBCS set to OFF, Debug Tool will convert any undisplayable character in the
source listing to the period (.) character. With DBCS set to ON no such conversion
is performed.

| End of CICS Only

SET DEFAULT LISTINGS

Defines a default sublibrary to be searched for program source listings or source
files. The LISTINGS keyword cannot be abbreviated.

listings_file
Specifies a valid sublibrary name to be searched for program source listings or
source files.

Usage Notes:

e The SET SOURCE ON command has a higher precedence than the
SET DEFAULT LISTINGS command.

Example:

Indicate that the default listings file is allocated to sublibrary
LISTINGS.LIBRARY.

SET DEFAULT LISTINGS LISTINGS.LIBRARY ;

SET DEFAULT SCROLL (Full-Screen Mode)

Sets the default scroll amount that is used when a SCROLL command is issued
without the amount specified. The initial setting is PAGE.

CSR
Scrolls in the specified direction until the character where the cursor is
positioned reaches the edge of the window.

Chapter 13. Debug Tool Commands 307

SET Command

DATA
Scrolls by one line less than the window size or by one character less than the
window size (if moving left or right).

HALF
Scrolls by half the window size.

integer
Scrolls the specified number of lines (up or down) or the specified number of
characters (left or right). Maximum value is 9999.

MAX
Scrolls in the specified direction until the limit of the data is reached.

PAGE
Scrolls by the window size.

Example:

Set the default amount to half the size of the window.
SET DEFAULT SCROLL HALF;

SET DEFAULT WINDOW (Full-Screen Mode)

SET ECHO

Specifies what window is selected when a window referencing command (for
example, FIND, SCROLL, or WINDOW) is issued without explicit window
identification and the cursor is outside the window areas. The initial setting is
SOURCE.

LOG
Selects the session Log window.

MONITOR
Selects the Monitor window.

SOURCE
Selects the source listing window.

Example:

Set the default to the Monitor window for use with scrolling commands.
SET DEFAULT WINDOW MONITOR;

Controls whether GO and STEP commands are recorded in the Log window when
they are not subcommands. The presence of long sequences of GO and STEP
commands clutters the Log window and provides little additional information. SET
ECHO makes it possible to suppress the display of these commands. The contents
of the log file are unaffected. The initial setting is ON.

*

\ 4
A

»»—SET—ECHO ON
|—O FFJ |—ke yword—

ON
Shows given commands in the Log window.

308 Debug Tool/VSE V1R1 User's Guide and Reference

SET EQUATE

SET Command

OFF
Suppresses given commands in the Log window.

keyword
Can be GO (with no operand) or STEP.

* Specifies that the command is applied to the GO and STEP commands. This
is the default.

Examples:

» Specify that the display of GO and STEP commands is suppressed.
SET ECHO OFF;

e Specify that GO and STEP commands are displayed.
SET ECHO ON =*;

Equates a symbol to a string of characters. The equated symbol can be used
anywhere a keyword, identifier, or punctuation is used in a Debug Tool command.
When an equated symbol is found in a Debug Tool command (other than the
identifier operand in SET EQUATE and CLEAR EQUATE), the equated symbol is
replaced by the specified string before parsing continues.

\ 4
A

»»—SET—EQUATE—identifier—=—string—;

identifier
An identifier that is valid in the current programming language. The maximum
length of the identifier is:

¢ For C, 32 SBCS characters
e For COBOL, 30 SBCS characters
e For PL/I, 31 SBCS characters

The identifier can contain DBCS characters.

string
A string constant in the current programming language. The maximum length
of the replacement string is 255 SBCS characters.

Usage Notes:

e Operands of the following commands are for environments other than
the standard Debug Tool environment and are not scanned for
EQUATEd symbol substitution:

COMMENT

INPUT

SET DEFAULT LISTINGS

SET INTERCEPT ON/OFF FILE
SET LOG ON FILE

SET SOURCE (cu_spec)

USE

¢ To remove an EQUATE definition, use the CLEAR EQUATE command.

* To remain accessible when the current programming language setting is
changed, symbols that are equated when the current programming

Chapter 13. Debug Tool Commands 309

SET Command

Examples:

SET EXECUTE

language setting is C must be entered in uppercase and must be valid
in the other programming languages.

If an EQUATE identifier coincides with an existing keyword or keyword
abbreviation, EQUATE takes precedence. If the EQUATE identifier is
already defined, the new definition replaces the old.

The equate string is not scanned for, or substituted with, symbols
previously set with a SET EQUATE command.

Specify that the symbol INFO is equated to "ABC, DEF (H+1)". The
current programming language setting is either C or COBOL.

SET EQUATE INFO = "ABC, DEF (H+1)";
Specify that the symbol tstlen is equated to the equivalent of a #define
for structure pointing. The current programming language setting is C.

Note that this lowercase symbol will not necessarily be accessible if the
current programming language changes.

SET EQUATE tstlen = "structl->member.b->c.len";

Specify that the symbol VARVALUE is equated to the command LIST x.
SET EQUATE VARVALUE = "LIST x";

Controls whether commands from all input sources are performed or just syntax
checked (primarily for checking USE files). The initial setting is ON.

|—ON—
»»—SET—EXECUTE 5

ON

A\
A

Lorr-

o Specifies that commands are accepted and performed.

OFF

Specifies that commands are accepted and parsed; however, only the following
commands are performed: END, GO, SET EXECUTE ON, QUIT, and USE.

Example:

Specify that all commands are accepted and performed.

SET

SET FREQUENCY

EXECUTE ON;

Controls whether statement executions are counted. The initial setting is OFF.

»»—SET—FREQUENCY B 3
oN—] t

’—OFF—

\4
A

cu_spec

(—¥-¢u_spec1—)]

310 Debug Tool/VSE VIR1 User's Guide and Reference

SET HISTORY

SET Command

ON
Specifies that statement executions are counted.

OFF
Specifies that statement executions are not counted.

cu_spec
A valid compile unit specification; see [‘{CU_Spec” on page 201} If omitted, all
compile units with statement information are processed.

Note: See also FLIST FREQUENCY” on page 277

Example:

Specify that statement executions are counted in compile units main and
subrl.

SET FREQUENCY ON (main, subrl);

Specifies whether entries to Debug Tool are recorded in the history table and
optionally adjusts the size of the table. The history table contains information about
the most recently processed breakpoints and conditions. The initial setting is ON;
the initial size is 100.

\ 4
A

|—0N—
»»—SET—HISTORY ;
|—OFF— |—integerJ

ON

Maintains the history of invocations.

OFF
Suppresses the history of invocations.

integer
The number of entries kept in the history table.

Note: See also FLIST LAST” on page 278.

Examples:

¢ Adjust the history table size to 50 lines.
SET HISTORY 50;

e Turn off history recording.
SET HISTORY OFF;

SET INTERCEPT (C and COBOL)

Intercepts input to and output from specified files. Output and prompts for input are
displayed in the log.

Only sequential I/0 can be intercepted. 1/O intercepts remain in effect for the entire

debug session, unless you terminate them by selecting SET INTERCEPT OFF.
The initial setting is OFF.

Chapter 13. Debug Tool Commands 311

SET Command

OFF—
»—SET—INTERCEPT% FILE—file_spec
on— LconsoLe———

\ 4
A

Turns on I/O interception for the specified file. Output appears in the log,
preceded by the file specifier for identification. Input causes a prompt entry in
the log, with the file specifier identified. You can then enter input for the
specified file on the command line by using the INPUT command. See
[Command (C and COBOL)” on page 271}

OFF

Turns off I/O interception for the specified file.

FILE file_spec (C)

A valid file specification that is interpreted by each supported language. The
FILE keyword cannot be abbreviated.

In C, this can be any valid fopen() file specifier including stdin, stdout, or
stderr.

Note: If the interception is for a sublibrary member, the file specification (DD:)
must include the sublibrary name, even if the fopen() is unqualified.
that is, a specification of the form DD:1ibrary.sublibry(member.name) is
required.

CONSOLE (COBOL)

Turns on I/O interception for the console.

This consists of:

e Job log output from DISPLAY UPON CONSOLE
e Screen output (and confirming input) from STOP 'literal’
e Terminal input for ACCEPT FROM CONSOLE or ACCEPT FROM SYSIN.

Usage Notes:

e COBOL supports only the CONSOLE command.

e For C, intercepted streams or files cannot be part of any C 1/0
redirection during the execution of a nested enclave.

e For PL/I, SET INTERCEPT is not supported.
e For CICS, SET INTERCEPT is not supported.

Examples:

e Turn on the /O interception for the console. The current programming
language setting is COBOL.

SET INTERCEPT CONSOLE;

e Turn on the I/O interception for the fopen() file specifier dd:mydd. The
current programming language setting is C.
SET INTERCEPT ON FILE dd:mydd;

312 Debug Tool/VSE VIR1 User's Guide and Reference

SET Command

SET KEYS (Full-Screen Mode)

SET LOG

Controls whether PF key definitions are displayed when the SCREEN setting is ON.
The initial setting is ON.

ON 12
»»—SET—KEYS E_J [] ; ><
OFF 24
ON
Displays PF key definitions.
OFF

Suppresses the display of the PF key definitions.
12 Shows PF1-PF12 on the screen bottom.
24 Shows PF13-PF24 on the screen bottom.

See also ['SET PFKEY” on page 316|

Example:

Specify that the display of the PF key definitions is suppressed.
SET KEYS OFF;

Controls whether each performed command and the resulting output is written to
the log file and defines (or redefines) the file that is used. The initial setting is ON
FILE SYSLST.

N
N

0
F LFI LE—fi Ze—I
»»—SET—LOG
KEEP—count
OFF

\ 4
A

ON

Specifies that commands and output are written to the log file.

FILE file
Identifies the log file used. The FILE keyword cannot be abbreviated.

Details on the log file can be found in [The Log File” on page 30

KEEP count
Specifies the number of lines of log output retained for display. The initial
setting is 1000; count cannot equal zero (0).

OFF
Specifies that commands and output are not written to a log file.

Chapter 13. Debug Tool Commands 313

SET Command

Usage Notes:

e The log output lines retained for display are always the last (that is, the
most recent) lines.

e Setting LOG OFF does not suppress the log display.

 If the same file name already exists, the output log is appended to the
existing file.

Examples:

» Specify that commands and output are written to the sublibrary member
mainprog.log.
SET LOG ON FILE (mainprog.log);

* Indicate that 500 lines of log output are retained for display.
SET LOG KEEP 500;

SET LOG NUMBERS (Full-Screen Mode)

Controls whether line numbers are shown in the Log window. The initial setting is
ON.

ON
>>—SET—LOG—NUMBERS——|—;
Lorr]

\ 4
A

ON
Shows line numbers in the Log window.

OFF
Suppresses line numbers in the Log window.

Example:

Specify that log line numbers are not shown.
SET LOG NUMBERS OFF;

SET MONITOR NUMBERS (Full-Screen Mode)

Controls whether line numbers are shown in the Monitor window. The initial setting
is ON.

A\
A

ON—
»»—SET—MONITOR—NUMBERS [——
OFF

ON

Shows line numbers in the Monitor window.

OFF
Suppresses line numbers in the Monitor window.

314 Debug Tool/VSE VIR1 User's Guide and Reference

SET MSGID

SET Command

Example:

Specify that monitor line numbers are not shown.
SET MONITOR NUMBERS OFF;

Controls whether the Debug Tool messages are displayed with the message prefix
identifiers. The initial setting is OFF.

OFF
[T]
»»—SET—MSGID ;
L on—]

\ 4
A

ON
Displays message identifiers. The first 7 characters of the message contain the
EQANnnnn message prefix identifier, then a blank, then the original message
text, such as: 'EQA2222 Program does not exist.'

OFF
Displays only the message text.

Example:

Specify that message identifiers are suppressed.
SET MSGID OFF;

SET NATIONAL LANGUAGE

Switches your application to a different run-time national language that determines
what translation is used when a message is displayed. The switch is effective for

the entire run-time environment; it is not restricted to Debug Tool activity only. The
initial setting is supplied by LE/VSE, according to the setting in the current enclave.

NATIONA L—|

»»—SET |_

A\
A

LANGUAGE—!Ianguage_code—;

language_code
A valid three-letter set that identifies the language used. The language code
can have one of the following values:

United States English: ENU
United States English (Uppercase): UEN
Japanese: JPN

Usage Notes:
e This setting affects both your application and Debug Tool.

¢ At the beginning of an enclave, the settings are those provided by
LE/VSE or your operating system. For nested enclaves, the parent's
settings are restored upon return from a child enclave.

Chapter 13. Debug Tool Commands 315

SET Command

Examples:

e Set the current national language to Japanese.
SET NATIONAL LANGUAGE JPN;

e Set the current national language to United States English.
SET LANGUAGE ENU;

SET PACE
Specifies the maximum pace of animated execution, in steps per second. The
initial setting is two steps per second. This setting is not supported in batch mode
and it has no effect under CICS.
»»—SET—PACE—number—; >«
number
A decimal number between 0 and 9999; it must be a multiple of 0.5.
Usage Notes:
e Associated with the SET PACE command is the STEP command.
Animated execution is achieved by defining a PACE and then issuing a
STEP n command where n is the number of steps to be seen in
animated mode. STEP * can be used to see all steps to the next
breakpoint in animated mode.
¢ When PACE is set to 0, no animation occurs.
Example:
Set the animated execution pace to 1.5 steps per second.
SET PACE 1.5;
SET PFKEY

Associates a Debug Tool command with a Program Function key (PF key). This
setting is not supported in batch mode.

\ 4
A

»»—SET—FPFn =—command—;
Lstrz’ngJ

PFn
A valid program function key specification (PF1 - PF24).

string
The label shown in the PF key display (if the KEYS setting is ON). It is entered
as a string constant and is truncated if longer than eight characters. If the
string is omitted, the first eight characters of the command are displayed.

command
A valid Debug Tool command or partial command.

316 Debug Tool/VSE VIR1 User's Guide and Reference

SET Command

Usage Notes:

e In Debug Tool, if there is any text on the command line at the time the
PF key is pressed, that text is appended to the PF key string, with an
intervening blank, for execution.

* In Debug Tool, the following initial PF key settings exist:

PF1 '?! =7

PF2 'STEP' = STEP

PF3 'QUIT! = QUIT

PF4 'LIST' = LIST

PF5 'FIND' = IMMEDIATE FIND

PF6 'AT/CLEAR' = AT TOGGLE

PF7 'UP' = IMMEDIATE UP

PF8 'DOWN' = IMMEDIATE DOWN
PF9 'GO! =GO

PF10 'ZOOM' = IMMEDIATE ZOOM
PF11 'ZOOM LOG" = IMMEDIATE ZOOM LOG
PF12 'RETRIEVE' = IMMEDIATE RETRIEVE

PF keys 13-24 are equivalent to PF keys 1-12, respectively.

Example:

Define PF key 5 to scroll the cursor-selected screen forward. The current
programming language setting is COBOL.

SET PF5 'Down' = IMMEDIATE SCROLL DOWN;

SET PROGRAMMING LANGUAGE

Sets the current programming language. You can only set the current programming
language to the selection of languages of the programs currently loaded. For
example, if the current phase contains both C and COBOL compile units, but not
PL/I, you can set the language only to C or COBOL. However, if you later STEP or
GO into another phase that contains C, COBOL, and PL/I compile units, you can
set the language to any of the three.

The programming language setting affects the parsing of incoming Debug Tool
commands. The execution of a command is always consistent with the current
programming language setting that was in effect when the command was parsed.
The programming language setting at execution time is ignored.

—CYCLE
»>—SET—PROGRAMMING—LANGUAGE H
—AUTOMATIC
—HOLD
C

\ 4
A

COBOL— |—HOLD—I
PLI—

CYCLE
Specifies that the programming language is set to the next language in the
alphabetic sequence of supported languages.

Chapter 13. Debug Tool Commands 317

SET Command

AUTOMATIC
Cancels a HOLD by specifying that the programming language is set according
to the current qualification and thereafter changed automatically each time the
qualification changes or STEP or GO is issued.

HOLD
Specifies that the given language (or the current language, if no language is
specified) remains in effect regardless of qualification changes. The language
remains in effect untii SET PROGRAMMING LANGUAGE changes the
language or releases the hold.

C Sets the current programming language to C.

COBOL
Sets the current programming language to COBOL.

PLI
Sets the current programming language to PL/I.

Usage Notes:

e If CYCLE or one of the explicit programming language names is
specified, the current programming language setting is changed
regardless of the currently suspended program or the current
qualification.

e The current programming language setting affects how commands are
parsed, not how they are performed. Commands are always performed
according to the programming language setting where they were
parsed. For example, it is not possible for a Debug Tool procedure to
contain a mixture of C and COBOL commands; there is no way for the
programming language setting to be changed while the procedure is
being parsed. Also, it is not possible for a command parsed with one
programming language setting to reference variables, types, or labels in
another programming language.

e If SET PROGRAMMING LANGUAGE AUTOMATIC is in effect,
changing the qualification automatically sets the current programming
language to the specified block or compile unit.

e SET PROGRAMMING LANGUAGE can be used to set the
programming language to any supported language in the current or
parent enclaves.

Example:

Specify that C is the current programming language.
SET PROGRAMMING LANGUAGE C;

SET QUALIFY

Simplifies the identification of references and statement numbers by resetting the
point of view to a new block, compile unit, or phase. In full-screen mode this
affects the contents of the Source window. If you are currently viewing one compile
unit in your Source window and you want to view another, issue the SET QUALIFY
command to change the qualification. The SET keyword is optional.

318 Debug Tool/VSE VIR1 User's Guide and Reference

SET Command

\4
A

>>—|_—_l—QUALIFY_—BLOCK_bZOCk_SpeC H
SET CU cu_spec—

|—PROGRAM—I

—LOAD

|—Zoad_specJ
—RESET
—RETURN
—UpP

BLOCK
Sets the current point of view to the specified block.

block_spec
A valid block specification; see [‘Block_Spec” on page 200|

Ccu
Sets the current point of view to the specified compile unit. CU is equivalent to
PROGRAM.

cu_spec
A valid compile unit specification; see ['CU_Spec” on page 201}

PROGRAM
Is equivalent to CU.

LOAD
Sets the current point of view to the specified phase.

load_spec

A valid phase specification; see fLoad Spec” on page 203 If omitted, the

initial (primary) phase qualification is used.

RESET
Resets qualification to the block of the suspended program and (if the SCREEN
setting is ON) scrolls the Source window to display the current statement line.

RETURN
Switches qualification to the next higher calling program.

uUP
Switches qualification up one lexical level to the statically containing block.

Usage Notes:

e If SET PROGRAMMING LANGUAGE AUTOMATIC is in effect (that is,
HOLD is not in effect), changing the qualification automatically sets the
current programming language to the specified block or compile unit.

e If you are debugging a program that has multiple enclaves, SET
QUALIFY can be issued only for phases, compile units, and blocks
which are known in the current enclave.

e The SET QUALIFY command does not imply a change in flow of control
when the program is resumed with the GO command.

e The SET QUALIFY command cannot modify the point of view to a
Debug Tool or library block.

e SET QUALIFY LOAD will not change the results of the QUERY
QUALIFY command.

Chapter 13. Debug Tool Commands 319

SET Command

Examples:
* Indicate to Debug Tool that the phase statphs should be used when no
phase is specified.
SET QUALIFY LOAD statphs;

e Set the qualification back to the point of the suspended program.
SET QUALIFY RESET;
e Set the block qualification to blockx. As a result, the phase qualification

and compile unit qualification will be updated to the phase and compile
unit which contain the block bTockx.

SET QUALIFY BLOCK blockx;

SET REFRESH (Full-Screen Mode)

SET REWRITE

Controls screen refreshing. This command is only valid when in full screen mode,
that is the SET SCREEN setting is ON. The initial setting for REFRESH is OFF.

OFF—
>>—SET—REFRESH— ;
ON—

\ 4
A

ON
Clears the screen before each rewrite.

OFF
Rewrites without clear.

Note: SET REFRESH ON is needed for applications that also make use of the
screen.

Example:

Specify that rewrites only occur on those portions of the screen that have
changed. The screen is not cleared before being rewritten.

SET REFRESH OFF;

Forces a periodic screen rewrite during long sequences of output. This setting is
not supported in batch mode.

\ 4
A

»—SET—R EWRITE—L—_'—numbe r—;
EVERY

number
Specifies how many lines of intercepted output are written by the application
program before Debug Tool refreshes the screen. The initial setting is 50.

320 Debug Tool/VSE VIR1 User's Guide and Reference

SET Command

Example:

Force screen rewrite after each 100 lines of screen output.
SET REWRITE EVERY 100;

SET SCREEN (Full-Screen Mode)

Controls how information is displayed on the screen. The initial setting for a
supported full-screen terminal is ON.

N
N |

CYCLE
integer— LOG
MONITOR
SOURCE
CYCLE

Switches to the next window configuration in sequence.

0
»>—SET—SCREEN L

A

integer
An integer in the range 1 to 6, selecting the window configuration. The initial
setting is 1.

LOG or MONITOR or SOURCE
Specifies the sequence of window assignments within the selected
configuration (left to right, top to bottom). There must be no more than three
objects specified and they must all be different.

See [‘Changing Session Panel Window Layout’ on page 95|for more
information.

ON

Activates the Debug Tool full-screen services.

Usage Note: If neither CYCLE nor integer is specified, there is no change in the
choice of configuration. If no windows are specified, there is no change in
the assignment of windows to the configuration.

Example:

Indicate that the Log window is positioned above the Source window on the
left hand side of the screen and the Monitor window is to occupy the upper
right side portion of the screen. For more information, see FCustomizing
[Your Session” on page 94l

SET SCREEN 2 LOG MONITOR;

SET SCROLL DISPLAY (Full-Screen Mode)

Controls whether the scroll field is displayed when operating in full-screen mode.
The initial setting is ON.

ON—
»»—SET—SCROLL—DISPLAY :
Lorr

A\
A

Chapter 13. Debug Tool Commands 321

SET Command

SET SOURCE

ON
Displays scroll field.

OFF
Suppresses scroll field.

Example:

Specify that the scroll field is suppressed.
SET SCROLL DISPLAY OFF;

Associates a source file (for C) or source listing (for COBOL or PL/l) with one or
more compile units.

|

s

cu_spec

I P S
SET—SOURCE
" |—OFFJ () |—fi Ze_spe(:—l

ON
Displays the compile unit source file when active.

OFF
Specifies that the file is not displayed.

cu_spec

A valid compile unit specification; see 'CU Spec” on page 201} Multiple
compile units can be associated with the same source listing or source file.

file_spec
Identifies the compile unit source file used. It is used in place of the default
sublibrary member or file-id for the compile unit. It can be a sublibrary
member, a filename, or a file-id.

A valid name is required unless it is already known to Debug Tool (via a
previous SET SOURCE) or the default file name is valid.

Usage Notes:

e When SET SOURCE is issued against a compile unit that is the current
compile unit, it checks for the existence of the file. However, if the
compile unit is not the current compile unit, this check is not done. The
file associated with the source may not exist and the error (for
nonexistent file) does not appear until a function which requires this file
is attempted.

e The SET SOURCE ON command has a higher precedence than the
SET DEFAULT LISTINGS command.

e For COBOL, if the cu_spec includes any names that are case sensitive
include the name in single or double quotes.

e For PL/I, you may need to use the SET SOURCE command to specify
the location of your listing file if the CU or program name is not the
same as the listing file name. For example, for program name AVER
Debug Tool looks for the sublibrary member AVER.LIST. If the Debug
Tool window comes up empty, use the following command:

SET SOURCE ON (PGMNAME) listings.library(cu_name.LIST) ;

322 Debug Tool/VSE VIR1 User's Guide and Reference

SET Command

or
SET SOURCE ON (PGMNAME) (cu_name.LIST) ;

This specifies the actual location of the listing file, in this example a
sublibrary member with the program name differing from the CU name.

e For C, if your program has been compiled from SYSIPT (that is, Debug
Tool shows the CU name as DD:SYSIPT) you should use the following
command to point to the correct location for the source file:

SET SOURCE ON (%CU) (cu_name.c) ;
Examples:

 Indicate that the source file associated with compile unit OEFUN is
found in a member OEFUN.C in a sublibrary in the SOURCE search
chain.

SET SOURCE ON (oefun) (oefun.c) ;

¢ Indicate that the source file associated with a compile unit compiled
from SYSIPT is found as member oefun2.c in a sublibrary in the
SOURCE search chain.

SET SOURCE ON (%CU) (oefun2.c) ;

SET SUFFIX (Full-Screen Mode)

SET TEST

Controls the display of frequency counts at the right edge of the Source window
when in full-screen mode. The initial setting is ON.

ON—
»>—SET—SUFFIX—|— ;
Lorr]

\4
A

ON
Displays the suffix column.

OFF
Suppresses the suffix column.

Example:

Specify that the suffix column is displayed.
SET SUFFIX ON;

Overrides the initial run-time TEST options specified at invocation. The initial
setting is ALL.

test_level—|
»—SET—TEST—[(—test_ZeveZ—)

\4
A

.
s

test_level
Specifies what exception conditions cause Debug Tool to gain control, even
though no breakpoint exists. The parentheses are optional.

Chapter 13. Debug Tool Commands 323

SET Command

Test_level can include the following:

ALL

Specifies that the occurrence of an attention interrupt, termination of your
program (either normally or through an ABEND), or any program or LE/VSE
condition of Severity 1 and above causes Debug Tool to gain control,
regardless of whether a breakpoint is defined for that type of condition. If a
condition occurs and a breakpoint exists for the condition, the commands
specified in the breakpoint are executed. If a condition occurs and a
breakpoint does not exist for that condition, or if an attention interrupt
occurs, Debug Tool will:

¢ In interactive mode, read commands from the commands file (if it
exists) or prompt you for commands, or

¢ |n batch mode, read commands from the commands file.

For more information about attention interrupts, seel“Reﬁuestiné anI
ttention Interrupt During Interactive Sessions” on page 133]

ERROR

Specifies that only the following conditions cause Debug Tool to gain
control without a user-defined breakpoint.

e An attention interrupt

e Program termination

* A predefined LE/VSE condition of Severity 2 or above

e Any C condition other than SIGUSR1, SIGUSR2, SIGINT or SIGTERM.

Note: LE/VSE conditions are described in LE/VSE Debugging Guide and
Run-Time Messages.

If a breakpoint exists for one of the above conditions, any commands
specified in the breakpoint are executed. If no commands are specified,
Debug Tool reads commands from a commands file or prompts you for
commands in interactive mode.

NONE

Specifies that Debug Tool gains control only at an attention interrupt, or at
a condition if a breakpoint is defined for that condition. If a breakpoint does
exist for the condition, the commands specified in the breakpoint are
executed.

Examples:

¢ Indicate that only an attention interrupt or exception causes Debug Tool
to gain control when no breakpoint exists.

SET TEST ERROR;

¢ Indicate that no condition causes Debug Tool to gain control unless a
breakpoint exists for that condition.

SET TEST NONE;

324 Debug Tool/VSE VIR1 User's Guide and Reference

SET Command

SET WARNING (C and PL/)

Controls display of the Debug Tool warning messages and whether exceptions are
reflected to the application program. The initial setting is ON.

|—0N—
»»—SET—WARNING B ;
OFF—

\4
A

ON
Displays the Debug Tool warning messages, and conditions such as a divide
check result in a diagnostic message.

OFF
Suppresses the Debug Tool warning messages, and conditions raise an
exception in the application program.

Exceptions that occur due to interaction with you are likely to be due to typing
errors and are probably not intended to be passed to the application program.
However, you might want to raise a real exception in the program, for example, to
test some error recovery code. (TRIGGER is not always appropriate for this
because it does not set up the exception information.)

Usage Notes:
* Debug Tool detects C conditions such as the following:
— Division by zero
— Array subscript out of bounds for defined arrays

— Assignment of an integer value to a variable of enumeration data
type where the integer value does not correspond to an integer
value of one of the enumeration constants of the enumeration data
type.

See [‘C_Expressions” on page 145 for more information about which
conditions will be reported when WARNING is ON.

e Debug Tool detects the following PL/I computational conditions:
— Invalid decimal data
— CHARACTER to BIT conversion errors
— Division by zero
— Invalid length in varying strings

See [‘Using SET WARNING Command with Built-Ins” on page 187 for
more information about which conditions will be reported when
WARNING is ON.

Chapter 13. Debug Tool Commands 325

SHOW Prefix Command

Example:

Specify that conditions result in a diagnostic message.
SET WARNING ON;

SET Command (COBOL)

The SET command assigns a value to a COBOL reference. The SET keyword
cannot be abbreviated.

A\
A

»»—SET—refe rence—TO—Ere fe rence_—,—;

literal

reference
A valid Debug Tool COBOL reference.

literal
A valid COBOL numeric literal constant.

Usage Notes:

» If Debug Tool was invoked because of a computational condition or an
attention interrupt, using an assignment to set a variable might not give
expected results. This is due to the uncertainty of variable values within
statements as opposed to their values at statement boundaries.

e SET assigns a value only to a single receiver; unlike COBOL, multiple
receiver variables are not supported.

e Only formats 1 and 5 of the COBOL SET command are supported.

¢ Index-names can only be program variables (since OCCURS is not
supported for the Debug Tool session variables).

e COBOL ADDRESS OF identifier is supported only for identifiers that are
LINKAGE SECTION variables. In addition, COBOL ADDRESS OF as a
receiver must be level 1 or 77, and COBOL ADDRESS OF as a sender
can be any level except 66 or 88.

» Only the sender/receiver combinations listed in [‘Allowable Moves for the]
[Debug Tool SET Command” on page 352 are supported.

Examples:
e Set index name table-index to 5.
SET table-index TO 5;
* Assign to variable h-address the address of variable m-name.
SET h-address TO ADDRESS OF m-name;

SHOW Prefix Command (Full-Screen Mode)

The SHOW Prefix command specifies what relative statement (for C) or relative
verb (for COBOL) within the line is to have its frequency count temporarily shown in
the suffix area.

326 Debug Tool/VSE VIR1 User's Guide and Reference

STEP Command

\ 4
A

»>—SHOW
|—integerJ

integer
Selects a relative statement (for C) or a relative verb (for COBOL) within the
line. The default value is 1.

Usage Notes:

e If SET SUFFIX is currently OFF, SHOW Prefix forces it ON.
* The suffix display returns to normal on the next interaction.
e The SHOW Prefix command is not logged.

Example:

Display the frequency count of the third statement or verb in the line (typed
in the prefix area of the line where the statement is found).

SHOW 3

No space is needed as a delimiter between the keyword and the integer;
hence, SHOW 3 is equivalent to SHOW3.

STEP Command

The STEP command causes Debug Tool to dynamically step through a program,
executing one or more program statements. In full-screen mode, it provides
animated execution.

STEP ends if one or more of the following conditions is reached:

e Attention interrupt
e A breakpoint is encountered
e Normal or unusual termination of the program

—

»»—STEP ;
tinteger— INTO—
e OVER—

RETURN—

A\
A

integer
Indicates the number of statements performed. The default value is 1. If
integer is greater than 1, the statement is performed as if it were that many
repetitions of STEP with the same keyword and a count of one. The speed of
execution, or the pace of stepping, is set by either the SET PACE command, or
with the Pace of visual trace field on the Profile panels.

* Specifies that the program should run until interrupted. STEP * is equivalent to
GO.

INTO
Steps into any called procedures or functions. This means that stepping
continues within called procedures or functions. This is the default except
when the called procedure or function is a library or operating system routine.

Chapter 13. Debug Tool Commands 327

switch Command

OVER
Steps over any procedure call or function invocations. This operand provides
full-speed execution (with no animation) while in called procedures and
functions, resuming STEP mode on return. This is the default when the called
procedure or function is a library or operating system routine.

RETURN
Steps to the return point the specified number of levels back, halting at the
statement following the corresponding procedure call or function invocation.
This operand provides full-speed execution (with no animation) for the
remainder of the current procedure or function, and for any called procedures
or functions, resuming STEP mode on return.

Usage Notes:

e If STEP is specified in a command list (for example, as the subject of
an IF command or WHEN clause), all subsequent commands in the list
are ignored.

e |f STEP is specified within the body of a loop, it causes the execution of
the loop to end.

e To suppress the logging of STEP commands, use the SET ECHO OFF
command.

 If two operands are given, they can be specified in either order.
¢ The animation execution timing is set by the SET PACE command.

e The source panel provides a means of suppressing the display of
selected listings or files. This gives some control of "debugging scope,"
since animated execution does not occur within a phase where the
source listing or source file is not displayed.

Examples:
¢ Step through the next 25 statements and if an application subroutine or
function is invoked, continue stepping into that subroutine or function.
STEP 25 INTO;
e Step through the next 25 statements, but if any application subroutines

or functions are invoked, switch to full-speed execution without
animation until the subroutine or function returns.

STEP 25 OVER;

e Return at full speed through three levels of calls.
STEP 3 RETURN;

switch Command (C)

The switch command enables you to transfer control to different commands within
the switch body, depending on the value of the switch expression. The switch,
case, and default keywords must be lowercase and cannot be abbreviated.

328 Debug Tool/VSE VIR1 User's Guide and Reference

switch Command

\4
A

»»—switch—(—expression—)—{—| switch_body }—}

switch_body:
I | default_clause }

J—| case_clause }J—
—¢—| case_clause }J—

case_clause:
—case—case_expression—: |

v

\ 4

default_clause:
| |
|
l—def ault—: |
—Ecomman dj—
expression

A valid Debug Tool C expression.

case_expression
A valid character or optionally signed integer constant.

command
A valid Debug Tool command.

The value of the switch expression is compared with the value of the expression in
each case clause. If a matching value is found, control is passed to the command
in the case clause that contains the matching value. If a matching value is not
found and a default clause appears anywhere in the switch body, control is
passed to the command in the default clause. Otherwise, control is passed to the
command following the switch body.

If control passes to a command in the switch body, control does not pass from the
switch body until a break command is encountered or the last command in the
switch body is performed.

Usage Notes:
¢ Declarations are not allowed within a switch command.

e The switch command does not end with a semicolon. A semicolon
after the closing brace is treated as a Null command.

¢ Although this command is similar to the switch statement in C, it is
subject to Debug Tool restrictions on expressions.

e Duplicate case_expression values are not supported.

Chapter 13. Debug Tool Commands 329

switch Command

Examples:

e The following switch command contains several case clauses and one
default clause. Each clause contains a function call and a break
command. The break commands prevent control from passing down
through subsequent commands in the switch body.

If key has the value '/', the switch command calls the function divide.
On return, control passes to the command following the switch body.

char key;

printf("Enter an arithmetic operator\n");
scanf("%c",&key);

switch (key)

case '+':
add();
LIST (key);
break;

case '-':
subtract();
LIST (key);
break;

case '*':
multiply();
LIST (key);
break;

case '/':
divide();
LIST (key);
break;

default:
printf("Invalid key\n");
break;

}

¢ In the following example, break commands are not present. If the value
of c is equal to 'A', all 3 counters are incremented. If the value of c is
equal to 'a', Tettera and total are increased. Only total is
increased if c is not equalto 'A' or 'a'.

char text[100];
int capa, i, lettera, total;

for (i=0; i < sizeof(text); i++) {

switch (text[i]) {
case 'A':
capat+;
case 'a':
letterat++;
default:

total++;

330 Debug Tool/VSE V1R1 User's Guide and Reference

TRIGGER Command

TRIGGER Command

The TRIGGER command raises the specified AT-condition in Debug Tool, or it
raises the specified programming language condition in your program.

»»—TRIGGER AT ; >«
|—CURSOR—I
condition
—AT—ALLOCATE identifier
LT
—AT—APPEARANCE cu_spec
LT
—AT—CALL entry_name
]
—AT—CHANGE——reference
—%STORAGE
—address
1
r
i:iength—
Ly
—AT—DELETE load_spec
LT
—AT—ENTRY block_spec
I Bttt I
—AT—EXIT—[block_spec
*#
—AT—GLOBAL——APPEARANCE
—CALL———
—DELETE—
—ENTRY
—EXIT——
—LABEL
—LINE——
—LOAD——
—PATH——
—STATEMENT—
—AT—LABEL statement_label
L .
—AT stmt_id. T
l_LINE_I | : mt_id_spec
—AT—LOAD—EZoad_spec
*;‘
—AT—OCCURRENCE—condition
—AT—PATH
—AT stmt_id_spec
l—STATEMENTJ L*——I_
condition

A valid condition or exception. This can be either an LE/VSE symbolic
feedback code, or a language-oriented keyword or code, depending on the
current programming language setting.

If no active condition handler exists for the specified condition, the default
condition handler can cause the program to end prematurely.

Following are the C condition constants; they must be uppercase and not
abbreviated. See also|Appendix C, “Using C Reference Information with|

[Debug Tool” on page 346 for a list of C conditions and their LE/VSE

equivalents.

Chapter 13. Debug Tool Commands 331

TRIGGER Command

SIGABND SIGINT SIGTERM
SIGABRT SIGIOERR SIGUSR1
SIGFPE SIGSEGV SIGUSR2
SIGILL

There are no COBOL condition constants. Instead, an LE/VSE symbolic
feedback code must be used, for example, CEE347. See LE/VSE
Programming Guide for more details about language condition handling
interactions.

PL/I condition constants may be used, for syntax and acceptable abbreviations

see FON_Command (PL/I)” on page 287|

cu_spec
A valid compile unit specification; see [‘CU_Spec” on page 201|

entry_name
A valid external entry point name constant or zero (0); however, 0 can only be
specified if the current programming language setting is C or PL/I.

reference
A valid Debug Tool reference in the current programming language; see
[FReferences” on page 203.

%STORAGE
A built-in function that provides an alternative way to select an AT CHANGE
subject.

address
The starting address of storage to be watched for changes. This must be a
hex constant: Ox in C, Hin COBOL (using either double (") or single (')
quotes), or a PX constant in PL/I.

length
The number of bytes of storage being watched for changes. This must be
a positive integer constant. The default value is 1.

load_spec
A valid phase specification; see [‘Load_Spec” on page 203|

block_spec

A valid block specification; see [‘Block Spec” on page 200l

statement_label
A valid source label constant; see [Statement_Label” on page 205]

stmt_id_spec
A valid statement id specification; see [‘Statement_Id_Range and|
Stmt |d Spec” on page 204

332 Debug Tool/VSE VIR1 User's Guide and Reference

USE Command

Usage Note:
e AT TERMINATION cannot be raised by TRIGGER.

Examples:

In the following examples, note the difference between triggering a
breakpoint, which performs Debug Tool commands associated with the
breakpoint, and triggering a condition, which actually raises the condition
and causes a corresponding system action.

e Perform the commands in the AT OCCURRENCE CEE347 breakpoint
(the CEE347 condition is not raised). The current programming
language setting is COBOL.

AT OCCURRENCE CEE347 PERFORM
SET ix TO 5;
END-PERFORM;

TRIGGER AT OCCURRENCE CEE347; /+ SET ix TO 5 is executed */

* Raise the SIGTERM condition in your program. The current
programming language setting is C.
TRIGGER SIGTERM;

e A previously defined STATEMENT breakpoint (for line 13) is triggered.

AT 13 LIST "at 13";
TRIGGER AT 13;
/* "at 13" will be the echoed output here */

e Assume the following breakpoints exist in a program:
AT CHANGE x LIST TITLED (x); AT STATEMENT 10;

If Debug Tool is invoked for the STATEMENT breakpoint and you want
to trigger the commands associated with the AT CHANGE breakpoint,
enter:

TRIGGER AT CHANGE x;

Debug Tool displays the value of x.

USE Command

The USE command causes the Debug Tool commands in the specified file to be
either performed or syntax checked. This file can be a log file from a previous
session. The specified file can itself contain another USE command. The
maximum number of USE files open at any time is limited to eight. The USE
keyword cannot be abbreviated.

»»—USE file ;

\ 4
A

file A valid file identifier. containing the Debug Tool commands to be performed. It
can be a sublibrary member, a filename, or a file-id.

Chapter 13. Debug Tool Commands 333

USE Command

Usage Notes:

e To check the syntax of the commands in a USE file, set the EXECUTE
setting to OFF and then issue a USE command for the file.

e Commands read from a USE file are logged as comments.

e The log file can serve as a USE file in a subsequent Debug Tool
session.

e Recursive calls are not allowed; that is, a commands file cannot be
USEd if it is already active. This includes the primary commands and
preferences files. If another invocation of Debug Tool occurs during the
execution of a USE file (for example, if a condition is raised while
executing a command from a USE file), the USE file is not used for
command input until control returns from the condition.

¢ The USE file is closed when the end of the file is reached.

e If a "nonreturning" command (such as GO) is performed from a USE
file, the action taken (as far as closing the USE file) depends on:

1. If the USE file was invoked directly or indirectly from the primary
commands file or preferences file, then it has the same
characteristics as the primary commands file. That is, it "keeps its
place" and the next time Debug Tool requests a command, it reads
from the USE file where it left off.

2. If the USE file was not invoked directly or indirectly from the primary
commands file or preferences file, the rest of the USE file and the
file that invoked the USE file is skipped.

 If the end of the USE file is reached without encountering a QUIT
command, Debug Tool returns to the command source where the USE
command was issued. This can be the terminal, a command string, or
another commands file.

* A USE file takes on the aspects of whatever command source issued
the USE command, relative to its behavior when a GO, GOTO, or STEP
is executed. When invoked from the primary commands file, it
continues with its next sequential command at the next breakpoint. If it
is invoked from any other command sequence, the GO, GOTO, or
STEP causes any remaining commands in the USE file to be discarded.

Examples:

e Perform the Debug Tool commands in the file pointed to by the filename
DUSE300 in the following JCL statement.

// DLBL DUSE300, 'userid.DTCMDS',0

USE duse300;

e For CICS, perform Debug Tool commands in the sequential file with the
file-id TS64081.USE.FILE.

USE TS64081.USE.FILE;

In addition to using sequential files, you can perform Debug Tool
commands using sublibrary members.

USE Tibrary.sublibr(member.type);

334 Debug Tool/VSE V1R1 User's Guide and Reference

WINDOW Command

while Command (C)

The while command enables you to repeatedly perform the body of a loop until the
specified condition is no longer met or evaluates to false. The while keyword must
be lowercase and cannot be abbreviated.

\ 4
A

»»—while—(—expression—)—command

expression
A valid Debug Tool C expression.

command
A valid Debug Tool command.

The expression is evaluated to determine whether the body of the loop should be
performed. If the expression evaluates to false, the body of the loop never
executes. Otherwise, the body does execute. After the body has been performed,
control is given once again to the evaluation of the expression. Further execution
of the action depends on the value of the condition.

A break command can cause the execution of a while command to end, even
when the condition does not evaluate to false.
Examples:

 List the values of x starting at 3 and ending at 9, in increments of 2.

x = 1;
while (x +=2, x < 10)
LIST x;

e While --index is greater than or equal to zero (0), triple the value of the
expression item[index].
while (--index >= 0) {

item[index] *= 3;
printf("item[%d] = %d\n", index, item[index]);

WINDOW Command (Full-Screen Mode)

The WINDOW command provides window manipulation functions. WINDOW
commands can be made immediately effective with the IMMEDIATE command.
The cursor-sensitive form is most useful when assigned to a PF key. The
WINDOW keyword is optional.

The various forms of the WINDOW command are summarized in Table 15.

Table 15 (Page 1 of 2). Summary of WINDOW Commands

WINDOW CLOSE closes the specified window in the Debug Tool full-screen session
panel.
WINDOW OPEN opens a previously-closed window in the Debug Tool full-screen

session panel.

WINDOW SIZE controls the relative size of currently visible windows in the Debug
Tool full-screen session panel.

Chapter 13. Debug Tool Commands 335

WINDOW Command

Table 15 (Page 2 of 2). Summary of WINDOW Commands

WINDOW ZOOM expands the indicated window to fill the entire screen.

Usage Notes:

e |If no operand is specified and the cursor is on the command line, then
the default window id set by SET DEFAULT WINDOW is used (if it is
open, otherwise the precedence is SOURCE, LOG, MONITOR).

e The WINDOW command is not logged.

WINDOW CLOSE

Closes the specified window in the Debug Tool full-screen session panel. The
remaining open windows expand to fill the remainder of the screen. Closing a
window does not effect the contents of that window. For example, closing the
Monitor window does not stop the monitoring of variable values assigned by the
LIST MONITOR command.

If there is only one window visible, WINDOW CLOSE is invalid.

CURSOR—
> CLOSE - ;
WINDOW ELOG—

\4
A

MONITOR—
SOURCE—

CURSOR
Selects the window where the cursor is currently positioned unless on the
command line.

LOG
Selects the session Log window.

MONITOR
Selects the Monitor window.

SOURCE
Selects the source listing window.

Example:

Close the window containing the cursor.
WINDOW CLOSE CURSOR;

WINDOW OPEN

Opens a previously-closed window in the Debug Tool full-screen session panel.
Any existing windows are resized according to the configuration selected with the
PANEL LAYOUT command.

If the OPEN command is issued without an operand, Debug Tool opens the last
closed window.

336 Debug Tool/VSE V1R1 User's Guide and Reference

WINDOW SIZE

WINDOW Command

\ 4
A

MONITOR—

> OPEN
WINDOW ELOG—
SOURCE—

LOG
Selects the session Log window.

MONITOR
Selects the Monitor window.

SOURCE
Selects the source listing window.

Example:

Open the Monitor window.
WINDOW OPEN MONITOR;

Controls the relative size of currently visible windows in the Debug Tool full-screen
session panel.

CURSOR—
Covoond o6 T T ;
WINDOW integer ELOG—

»h
| 4.

\ 4
A

MONITOR—
SOURCE—

integer
Specifies the number of rows or columns, as appropriate for the selected
window and the current window configuration.

CURSOR
Selects the window where the cursor is currently positioned unless on the
command line. The cursor form of WINDOW SIZE applies to that window if
integer is specified. Otherwise, it redraws the configuration of windows so that
the intersection of the windows is at the cursor, or if the configuration does not
have a common intersection, so that the nearest border is at the cursor.

LOG
Selects the session Log window.

MONITOR
Selects the Monitor window.

SOURCE
Selects the Source listing window.

Chapter 13. Debug Tool Commands 337

WINDOW Command

Usage Notes:

¢ You cannot use WINDOW SIZE if a window is ZOOMed or if there is
only one window open.

e Each window in any configuration has only one adjustable dimension:
— If one or more windows are as wide as the screen:

- The number of rows is adjustable for each window as wide as
the screen
- The number of columns is adjustable for the remaining windows

— If one or more windows are as high as the screen:

- The number of columns is adjustable for each window as high
as the screen
- The number of rows is adjustable for the remaining windows

Examples:

¢ Adjust the size of the Source window to 15 rows.
WINDOW SIZE 15 SOURCE;

e Adjust the size of the window where the cursor is currently positioned to
20 rows.

SIZE 20 CURSOR;

WINDOW ZOOM

Expands the indicated window to fill the entire screen or restores the screen to the
currently defined window configuration.

|—CURSOR—
Z00M H
|—WINDOWJ ELOG—

[
>

A\
A

MONITOR—
SOURCE—

CURSOR
Selects the window where the cursor is currently positioned unless on the
command line.

LOG
Selects the session Log window.

MONITOR
Selects the Monitor window.

SOURCE
Selects the source listing window.

If the selected window is currently ZOOMed then the zoom mode is toggled. That
is, the currently defined window configuration is restored.

338 Debug Tool/VSE V1R1 User's Guide and Reference

WINDOW Command

Example:

Expand the Log window.
WINDOW ZOOM LOG;

Chapter 13. Debug Tool Commands 339

340 Debug Tool/VSE V1R1 User's Guide and Reference

Part 4. Appendixes

© Copyright IBM Corp. 1995, 1996 341

Coexistence

Appendix A. Coexistence

This appendix discusses Debug Tool's level of coexistence with other HLL debug
tools, and the amount of debugging support you can expect for previous versions of
debuggable languages.

Coexistence with Other Debug Tools

Coexistence of Debug Tool with other HLL debug tools cannot be guaranteed.

C, COBOL, and PL/I are dependent upon LE/VSE to provide debugging
information.

Another debug tool might provide limited services for a HLL not yet supported by
Debug Tool, but conditions such as exceptions cause LE/VSE to pass control to an
installed LE/VSE debug tool.

Coexistence with Unsupported HLL Modules

342

Compile units or program units written in unsupported high- or low-level languages,
or in older releases of HLLs, are tolerated.

COBOL programs compiled with VS COBOL Il should work successfully with
Debug Tool, especially if they are link-edited with the LE/VSE run-time
environment. Refer to VS COBOL Il Application Programming Guide for VSE for
further details on compiling with VS COBOL II.

© Copyright IBM Corp. 1995, 1996

Using Debug Tool in a Production Mode

Appendix B. Using Debug Tool in a Production Mode

This appendix helps you determine how much of Debug Tool's testing functions you
want to continue using after you complete major testing of your application and
move into the final tuning phase. Included are discussions of program size and
performance considerations; the consequences of removing hooks, the statement
table, and the symbol table; and using Debug Tool on optimized programs.

Fine-Tuning Your Programs with Debug Tool

After initial testing, you might want to consider the following options available to
improve performance and reduce size:

* Removing hooks

One option for increasing the performance of your program is to compile with a
minimum of hooks or with no hooks. Compiling with the option TEST(NOLINE,
BLOCK, NOPATH) for C programs and TEST(BLOCK) for COBOL programs
causes the compiler to insert a minimum number of hooks while still allowing
you to perform tasks at block boundaries.

Independent studies show that performance degradation is negligible because

of hook-overhead for PL/I programs. Also, in the event you need to request an
attention interrupt, Debug Tool is not able to regain control without compiled-in
hooks.

It is a good idea to examine the benefits of maintaining hooks in light of the
performance overhead for that particular program.

* Removing statement and symbol tables

If you are concerned about the size of your program, you can remove the
symbol table, the statement table, or both, after the initial testing period. For C,
COBOL, and PL/I programs, compiling with the option TEST(NOSYM) inhibits
the creation of symbol tables.

Before you remove them, however, you should consider their advantages. The
statement table allows you to display the execution history with statement
numbers rather than offsets, and error messages identify statement numbers
that are in error. The symbol table enables you to refer to variables and
program control constants by name. Therefore, you need to look at the
trade-offs between the size of your program and the benefits of having symbol
and statement tables.

Removing Hooks, Statement Tables, and Symbol Tables

Debug Tool can also gain control at program initialization via the PROMPT
suboption of the run-time TEST option. Even if you decide to remove all hooks and
the statement and symbol tables from a production program, Debug Tool receives
control when a condition is raised in your program if you specify ALL or ERROR on
the run-time TEST option, or when a call to _ ctest(), CEETEST, or PLITEST is
executed.

When Debug Tool receives control in this limited environment, it does not know
what statement is in error (no statement table), nor can it locate variables (no

© Copyright IBM Corp. 1995, 1996 343

Using Debug Tool in a Production Mode

symbol table). Thus, you must use addresses and interpret hexadecimal data
values to examine variables. In this limited environment, you can:
e Determine the block that is in control:

1ist (%LOAD, %CU, %BLOCK);
or
1ist (%LOAD, %PROGRAM, %BLOCK);

e Determine the address of the error and of the enclosing block:
Tist (%ADDRESS, %EPA); (where %EPA allowed)
» Display areas of the program in hexadecimal format. Using your listing, you
can find the address of a variable and display the contents of that variable. For

example, you can display the contents at address 20058 in a C program by
entering:

LIST STORAGE (0x20058);

To display the contents at address 20058 in a COBOL or PL/I program, you
would enter:

LIST STORAGE (X'20058');
» Display registers:
LIST REGISTERS;
» Display program characteristics:
DESCRIBE CU; (for C)
DESCRIBE PROGRAM; (for COBOL)

e Display the dynamic block chain:
LIST CALLS;

e Continue your program processing:
GO;

e End your program processing:
QUIT;

If your program does not contain a statement or symbol table, you can use
temporary variables to make the task of examining values of variables easier.

Even in this limited environment, HLL library routines are still available.

Using Debug Tool on Optimized Programs

If you want to debug your application program with Debug Tool after compiling with
the compile-time OPTIMIZE option (where applicable), you must keep in mind that
optimization decreases the reliability of Debug Tool functions.

In the case of variable values, Debug Tool displays the contents of the storage
where the variable has been assigned. However, in an optimized program, the
variable might actually be residing in a register. As an example, consider the
following assignments:

5
a+3

a
b

344 Debug Tool/VSE V1R1 User's Guide and Reference

Using Debug Tool in a Production Mode

In an optimized program, the value of "5" associated with the variable a might
never be placed into storage. Instead, it might be pulled from a machine register.
If Debug Tool is requested to LIST TITLED a;, however, it looks in the storage
assigned to a and displays that value, no matter what it is.

LIST STATEMENT NUMBERS shows the statements that can be used in AT and
GOTO commands. Optimization has a similar effect when trying to determine the
source statement associated with a specific storage location. Normally, the
statement table supplies this information to Debug Tool, but if you request
optimization, the statement table might be incorrect. Code associated with one
statement can move to another storage location, and can appear (according to the
statement table) to be part of a completely different statement. Therefore, the
statement number Debug Tool displays as associated with a particular breakpoint
might be incorrect.

Also, if you have requested that your application be optimized, Debug Tool cannot
guarantee that a breakpoint set at a particular statement indeed occurs at the
beginning of the code generated for that statement.

Finally, optimization usually causes the code generated for a statement to be
dependent on register values loaded by the code for preceding statements. Thus,
if you request Debug Tool to change the path of flow in your program, you run the
risk of depriving statements of necessary input.

Appendix B. Using Debug Tool in a Production Mode 345

C Reference

Appendix C. Using C Reference Information with Debug Tool

This appendix contains reference information for use when debugging C programs
with Debug Tool.

Debug Tool Interpretive Subset of C Commands

Table 16 lists the Debug Tool interpretive subset of C commands. This subset is
a list of commands recognized by Debug Tool that either closely resemble or
duplicate the syntax and action of the C command. This subset of commands is
valid only when the current programming language is set to C.

Table 16. Debug Tool Interpretive Subset of C Commands

Command Description

block ({}) Composite command grouping

break Termination of loops or switch commands
Declaration Declaration of session variables

do/while Iterative looping

Expression Any C expression except the conditional (?) operator
for/while Iterative looping

if Conditional execution

switch Conditional execution

C Reserved Keywords

Table 17 lists all keywords reserved by the C language. These keywords cannot
be abbreviated, used as variable names, or used as any other type of identifiers.

Table 17. C Reserved Keywords

auto else long switch
break enum register typedef
case extern return union
char float short unsigned
const for signed void
continue goto sizeof volatile
default if static while

do int struct _Packed
double

Operators and Operands

346

[Table 18 on page 347|lists the C language operators in order of precedence and
shows the direction of associativity for each operator. The primary operators have
the highest precedence. The comma operator has the lowest precedence.
Operators in the same group have the same precedence.

[Table 18 on page 347|lists the C operators and their orders of precedence.

© Copyright IBM Corp. 1995, 1996

C Reference

Table 18. Operator Precedence and Associativity

Precedence Level Associativity Operators

Primary left to right O 11 . -

Unary right to left Ho-- -+ 1 7 &
* (typename) sizeof

Multiplicative left to right x [/ %

Additive left to right + -

Bitwise Shift left to right << >>

Relational left to right < > <= >=

Equality left to right == I=

Bitwise Logical AND left to right &

Bitwise Exclusive OR left to right A OF =

Bitwise Inclusive OR left to right !

Logical AND left to right &

Logical OR left to right H

Assignment right to left = 4= = 4= /=

Comma left to right ,

LE/VSE Conditions and Their C Equivalents

LE/VSE condition names (the symbolic feedback codes CEExxx) can be used
interchangeably with the equivalent C conditions listed in Table 19. For example,
AT OCCURRENCE CEE341 is equivalent to AT OCCURRENCE SIGILL. Raising a
CEE341 condition triggers an AT OCCURRENCE SIGILL breakpoint and vice
versa.

Table 19 (Page 1 of 2). LE/VSE Conditions and Their C Equivalents

LE/VSE Condition Description Equivalent C
condition
CEE341 Operation exception SIGILL
CEE342 Privileged operation exception SIGILL
CEES343 Execute exception SIGILL
CEE344 Protection exception SIGSEGV
CEE345 Addressing exception SIGSEGV
CEE346 Specification exception SIGILL
CEE347 Data exception SIGFPE
CEE348 Fixed point overflow exception SIGFPE
CEE349 Fixed point divide exception SIGFPE
CEE34A Decimal overflow exception SIGFPE
CEE34B Decimal divide exception SIGFPE
CEE34C Exponent overflow exception SIGFPE
CEE34D Exponent underflow exception SIGFPE

Appendix C. Using C Reference Information with Debug Tool 347

C Reference

Table 19 (Page 2 of 2). LE/VSE Conditions and Their C Equivalents

LE/VSE Condition Description Equivalent C
condition

CEE34E Significance exception SIGFPE

CEE34F Floating-point divide exception SIGFPE

348 Debug Tool/VSE V1R1 User's Guide and Reference

COBOL Reference

Appendix D. Using COBOL Reference Information with
Debug Tool

This appendix contains reference information for use when debugging COBOL
programs with Debug Tool.

Debug Tool Interpretive Subset of COBOL Commands

Table 20 lists the Debug Tool interpretive subset of COBOL language commands.
This subset is a list of commands recognized by Debug Tool that either closely

resemble or duplicate the syntax and action of the appropriate COBOL command.
This subset of commands is valid only when the current programming language is

COBOL.

Table 20. Debug Tool Interpretive Subset of COBOL Commands

Command Description

CALL Subroutine call

COMPUTE Computational assignment (including expressions)
Declaration Declaration of session variables

EVALUATE Multiway switch

IF Conditional execution

MOVE Noncomputational assignment

PERFORM Iterative looping

SET INDEX and POINTER assignment

COBOL Reserved Keywords

In addition to the subset of COBOL commands you can use while in Debug Tool,
there is a list of reserved keywords used and recognized by COBOL that cannot be
abbreviated, used as a variable name, or used as any other type of identifier. You
can find this list in the various COBOL language references.

Allowable Comparisons for the Debug Tool IF Command

Table 21 shows the allowable comparisons for the Debug Tool IF command. A
description of the codes follows the table.

Table 21 (Page 1

of 2). Allowable Compatrisons for the Debug Tool IF Command

OPERAND GR| AL | AN | ED | BI | NE | ANE| ID | IN | IDI | PTR| @ | IF | EF | D1
GROUP (GR) NN | NN | NN | NN | NN | NN | NN | NN NN NN | NN
ALPHABETIC NN | NN

(AL)

ALPHANUMERIC | NN NN

(AN)

EXTERNAL NN NU

DECIMAL (ED)

© Copyright IBM Corp. 1995, 1996

349

COBOL Reference

Table 21 (Page 2 of 2). Allowable Comparisons for the Debug Tool IF Command

OPERAND

GR

AL AN ED Bl NE | ANE| ID IN IDI PTR| @ IF EF D1

BINARY

NN

NU NU4

NUMERIC
EDITED (NE)

NN

NN

ALPHANUMERIC
EDITED (ANE)

NN

NN

FIGCON ZERO7

NN

NU NU NU NU NU

FIGCON1,7

NN

NN NN NN

NUMERIC
LITERAL7

NN

NU NU NU NU4 NU NU

NONNUMERIC
LITERAL2,7

NN

NN3| NN NN NN

INTERNAL
DECIMAL (ID)

NN

NU

INDEX NAME
(IN)

NN

NU4 104 | NU

INDEX DATA
ITEM (IDI)

NN

NU v

POINTER DATA
ITEM (PTR)

NU5| NUS

ADDRESS OF
(@)

NUS | NUS

FLOATING
POINT LITERAL7

NU NU

INTERNAL
FLOATING
POINT (IF)

NN

NU | NU

EXTERNAL
FLOATING
POINT (EF)

NN

NU NU

DBCS DATA
ITEM (D1)

NN

DBCS LITERAL?

NN

HEX LITERAL®

NUS

Notes:

the literal.

(< NS I~ V]

~

1 FIGCON includes all figurative constants except ZERO and ALL.
2 A nonnumeric literal must be enclosed in quotation marks, and the quotation marks are not valid characters in

Must contain only alphabetic characters.

Index name converted to subscript value before compare.

Only comparison for equal and not equal can be made.

Must be hexadecimal characters only, delimited by either double (") or single (') quotation marks and
preceded by H.

Constants and literals can also be compared against constants and literals of the same type.

Allowable comparisons are comparisons as described in IBM OS Full American
National Standard COBOL for the following:

NN Nonnumeric operands

NU Numeric operands

350 Debug Tool/VSE V1R1 User's Guide and Reference

COBOL Reference

10 Two index names
v Index data items
X High potential for user error

Allowable Moves for the Debug Tool MOVE Command

Table 22 shows the allowable moves for the Debug Tool MOVE command.

Table 22. Allowable Moves for the Debug Tool MOVE Command
Receiving Field
Source Field GR AL AN ED Bl NE ANE| ID IF EF D1
GROUP (GR) Y Y Y Y1 Y1 Y1 Y1 Y1 Y1 Y1
ALPHABETIC
(AL) Y Y
ALPHANUMERIC
(AN) Y Y
EXTERNAL vi v
DECIMAL (ED)
BINARY (BI) Y1 \%
NUMERIC Y
EDITED (NE)
ALPHANUMERIC Y v
EDITED (ANE)
FIGCON ZERO Y Y Y2 Y2 Y Y2 Y Y
SPACES (AL) Y Y Y Y
HIGH-VALUE,
LOW-VALUE, Y Y Y
QUOTES
NUMERIC

1
LITERAL Y Y Y Y Y Y
NONNUMERIC

1

LITERAL Y Y Y Y Y
INTERNAL

1
DECIMAL (ID) Y Y
FLOATING

1
POINT LITERAL Y Y Y
INTERNAL
FLOATING Y1 Y Y
POINT (IF)
EXTERNAL
FLOATING Y1 Y Y3
POINT (EF)
DBCS DATA Y
ITEM (D1)
DBCS LITERAL Y
Notes:
1 Move without conversion (like AN to AN)
2 Numeric move
3 Decimal-aligned and truncated, if necessary

Appendix D. Using COBOL Reference Information with Debug Tool 351

Allowable Moves for the SET command

For more information, see FMOVE Command (COBOL)” on page 286}

Allowable Moves for the Debug Tool SET Command

Table 23 shows the allowable moves for the Debug Tool SET command.

Table 23. Allowable Moves for the Debug Tool SET Command

Receiving Field

Source Field IN IDI PTR ED Bl ID

INDEX NAME

(IN) Y Y Y Y Y

INDEX DATA

ITEM (IDI) Y Y

POINTER DATA v

ITEM (PTR)

HEX LITERAL1 Y

NULL (NUL) Y

INTEGER v2

LITERAL

EXTERNAL Y

DECIMAL (ED)

BINARY (BI) Y

INTERNAL Y

DECIMAL (ID)

OBJECT

REFERENCE

(OR)

Notes:

1 Must be hexadecimal characters only, delimited by either double (") or single (')
quotation marks and preceded by H.

2 Index name is converted to index value.

352 Debug Tool/VSE VIR1 User's Guide and Reference

PL/l Reference

Appendix E. Using PL/I Reference Information with Debug

Tool

This appendix contains reference information for use when debugging PL/I
programs with Debug Tool.

Debug Tool Interpretive Subset of PL/l Commands

Table 24 lists the Debug Tool interpretive subset of PL/I commands. This subset
is a list of commands recognized by Debug Tool that either closely resemble or
duplicate the syntax and action of the corresponding PL/I command. This subset of
commands is valid only when the current programming language is PL/I.

Table 24. Debug Tool Subset of PL/I Commands

Command Description

Assignment Scalar and vector assignment

BEGIN Composite command grouping

CALL Debug Tool procedure call

DECLARE or DCL Declaration of session variables

DO Iterative looping and composite command grouping
IF Conditional execution

ON Define an exception handler

SELECT Conditional execution

These PL/I language-oriented commands are only a subset of all the commands
that are supported by Debug Tool.

PL/I Reserved Keywords

In addition to the subset of PL/I commands you can use while in Debug Tool, there
is a list of reserved keywords used and recognized by PL/I that cannot be
abbreviated, used as a variable name, or used as any other type of identifier. You
can find this list in IBM PL/I for VSE/ESA Language Reference.

Conditions and Condition Handling

All PL/I conditions are recognized by Debug Tool. They are used with the AT
OCCURRENCE and ON commands. See AT OCCURRENCE” on page 225| and
['ON Command (PL/)” on page 287}

When an OCCURRENCE breakpoint is triggered, the Debug Tool %CONDITION
variable holds the following values:

Table 25 (Page 1 of 2). PL/I Conditions and %CONDITION Values
Triggered Condition %CONDITION Value
AREA AREA

© Copyright IBM Corp. 1995, 1996 353

PL/I Reference

Table 25 (Page 2 of 2). PL/I Conditions and %CONDITION Values

Triggered Condition %CONDITION Value
COND CONDITION
CONVERSION CONVERSION
ENDFILE (MF) ENDFILE
ENDPAGE (MF) ENDPAGE

ERROR ERROR

FINISH CEE066

FOFL CEE348

KEY (MF) KEY

NAME (MF) NAME

OVERFLOW CEE34C

RECORD (MF) RECORD

SIZE SIZE

STRG STRINGRANGE
STRINGSIZE STRINGSIZE
SUBRG SUBSCRIPTRANGE
TRANSMIT (MF) TRANSMIT
UNDEFINEDFILE (MF) UNDEFINEDFILE
UNDERFLOW CEE34D
ZERODIVIDE CEE349

Unsupported PL/I Language Elements
The following list summarizes PL/I functions not available:

e Use of iSUB

 |Interactive declaration or use of user-defined functions

* All preprocessor directives

e Multiple assignments

e BY NAME assignments

e LIKE attribute

e FILE, PICTURE, and ENTRY data attributes

e All I/O statements, including DISPLAY

e INIT attribute

e Structures with the built-in functions CSTG, CURRENTSTORAGE, and
STORAGE

* The repetition factor is not supported for string constants

e GRAPHIC string constants are not supported for expressions involving other
data types

¢ Declarations cannot be made as sub-commands (for example in a BEGIN, DO,
or SELECT command group)

354 Debug Tool/VSE V1R1 User's Guide and Reference

Debug Tool Messages « EQA10081

Appendix F. Debug Tool Messages

All messages in this appendix are shown in ENGLISH format. The UENGLISH
format message text is the same, but is in uppercase letters.

Each message has a number of the form EQAnnnnx, where EQA indicates that the
message is an Debug Tool message, nnnn is the number of the message, and x
indicates the severity level of each message. The value of xis I, W, E, S, or U, as

described below:

| An informational message calls attention to some aspect of a
command response that might assist the programmer.

w A warning message calls attention to a situation that might not be what
is expected or to a situation that Debug Tool attempted to fix.

E An error message describes an error that Debug Tool detected or
cannot fix.

S A severe error message describes an error that indicates a command
referring to bad data, control blocks, program structure, or something
similar.

U An unrecoverable error message describes an error that prevents

Debug Tool from continuing.

Many of the Debug Tool messages contain information that is inserted by the
system when the message is issued. In this publication, such inserted information
is indicated by highlighted symbols, as shown by breakpoint-id in the following

example:

EQA10461 The breakpoint-id breakpoint is replaced.

EQA1001I The window configuration is configuration
; the sequence of window is sequence

Explanation: Used to display SCREEN as part of
QUERY SCREEN.

EQA1005I Target window is closed; SCROLL not
performed.

Explanation: The window specified in the SCROLL
command is closed.

EQA1002I One window must be open at all times.

Explanation: Only one window was open when a
CLOSE command was issued. At least one window
must be open at all times, so the CLOSE command is
ignored.

EQA10031I Target window is closed; FIND not
performed.

Explanation: The window specified in the FIND
command is closed.

EQA10041I Target window is closed; SIZE not
performed.

Explanation: The window specified in the SIZE
command is closed.

© Copyright IBM Corp. 1995, 1996

EQA1006I Command

Explanation: It is the character string 'Command' in
the main panel command line.

EQA10071 Step

Explanation: It is the character string 'Step' in the
main panel command line while stepping.

EQA1008I Scroll

Explanation: It is the character string 'Scroll' in the
main panel command line.

355

EQA1009I « EQA10521

EQA10091 DBCS characters are not allowed.

Explanation: The user entered DBCS characters in
scroll, window object id, qualify, prefix, or panel input
areas.

EQA1010I More...

Explanation: It is the character string 'More' in the
main panel command line.

EQA10461 The breakpoint-id breakpoint is replaced.

Explanation: This alerts the user to the fact that a
previous breakpoint action existed and was replaced.

Programmer Response: Verify that this was intended.

EQA1011I Do you really want to terminate this
session?

Explanation: This is for the END pop-up window.

EQA10471 The breakpoint-id breakpoint is replaced.

Explanation: This alerts the user to the fact that a
previous breakpoint action existed and was replaced.

Programmer Response: Verify that this was intended.

EQA1012I Enter Y for YES and N for NO

Explanation: This is for the END pop-up window. Y,
YES, N, and NO should NOT be translated.

EQA10481 Another generation of variable name is
allocated.

Explanation: An ALLOCATE occurred for a variable
where an AT ALLOCATE breakpoint was established.

EQA1013I Current command is incomplete, pending
more input

Explanation: This informational message is displayed
while entering a block of commands, until the command
block is closed by an END statement.

EQA10491 The breakpoint-id breakpoint action is:

Explanation: Used to display a command after LIST
AT when there is no every_clause. Enabled
breakpoints only. This message is followed by a
message of one or more lines showing the commands
performed each time the breakpoint is hit.

EQA1030I PENDING:

Explanation: Debug Tool needs more input in order to
completely parse a command. This can occur in
COBOL, for example, because PERFORM; was entered
on the last line.

Programmer Response: Complete the command.

EQA1031I The partially parsed command is:

Explanation: The explanation of a command was
requested or a command was determined to be in error.

Programmer Response: Determine the cause of the
error and reenter the command.

EQA1032I The next word can be one of:

Explanation: This title line will be followed by
message 1015.

EQA10331 /ist items

Explanation: This message is used to list all the items
that can follow a partially parsed command.

Programmer Response: Reenter the acceptable part
of the command and suffix it with one of the items in
this list.

356 Debug Tool/VSE V1R1 User's Guide and Reference

EQA10501I The breakpoint-id breakpoint has an
EVERY value of number, a FROM value of
number, and a TO value of number. The
breakpoint action is:

Explanation: Used to display a command after LIST
AT when there is an every_clause. Enabled
breakpoints only. This message is followed by a
message of one or more lines showing the commands
performed each time the breakpoint is hit.

EQA10511I The (deferred) breakpoint-id breakpoint
action is:

Explanation: Used to display a command after LIST
AT when there is no every_clause. Deferred and
enabled breakpoints only. This message is followed by
a message of one or more lines showing the commands
performed each time the breakpoint is hit.

EQA10521I The (deferred) breakpoint-id breakpoint
has an EVERY value of number, a FROM
value of number, and a TO value of
number. The breakpoint action is:

Explanation: Used to display a command after LIST
AT when there is an every_clause. Deferred and
enabled breakpoints only. This message is followed by
a message of one or more lines showing the commands
performed each time the breakpoint is hit.

EQA1053I « EQA10961

EQA1053I The (disabled) breakpoint-id breakpoint
action is:

Explanation: Used to display a command after LIST
AT when there is not an every_clause. For disabled
breakpoints only. This message is followed by a
message of one or more lines showing the commands
performed each time the breakpoint is hit.

EQA10541 The (disabled) breakpoint-id breakpoint
has an EVERY value of number, a FROM
value of number, and a TO value of
number. The breakpoint action is:

Explanation: Used to display a command after LIST
AT when there is an every_clause. For disabled
breakpoints only. This message is followed by a
message of one or more lines showing the commands
performed each time the breakpoint is hit.

EQA1055I The (disabled and deferred) breakpoint-id
breakpoint action is:

Explanation: Used to display a command after LIST
AT when there is not an every_clause. For disabled
and deferred breakpoints only. This message is
followed by a message of one or more lines showing
the commands performed each time the breakpoint is
hit.

EQA10561I The (disabled and deferred) breakpoint-id
breakpoint has an EVERY value of
number, a FROM value of number, and a
TO value of number. The breakpoint
action is:

Explanation: Used to display a command after LIST
AT when there is an every_clause. For disabled and
deferred breakpoints only. This message is followed by
a message of one or more lines showing the commands
performed each time the breakpoint is hit.

EQA10571 AT stmt-number can be risky because the
code for that statement may have been
merged with that of another statement.

Explanation: You are trying to issue an AT
STATEMENT command against a statement but the
code for that statement was either optimized away or
combined with other statements.

EQA10761 Direction an unknown program.

Explanation: The program can be written in
assembler language or in an unsupported language.
The message is issued as a result of the LIST CALLS
command.

EQA10771 Direction address Address in a PLANG
NOTEST block.

Explanation: The compile unit was compiled without
the TEST option. The message is issued as a result of
the LIST CALLS command.

EQA1078I Direction Place in PLANG CU.

Explanation: CU name of the call chain. The
message is issued as a result of the LIST CALLS
command.

EQA10861I The previous declaration of variable name
will be removed.

Explanation: You declared a variable whose name is
the same as a previously declared variable. This
declaration overrides the previous one.

EQA1090I The compile-time data for program
cu_name is

Explanation: This is the title line for the DESCRIBE
PROGRAM command.

EQA1091I The program was compiled with the
following options:

Explanation: This is the first of a group of DESCRIBE
PROGRAM messages.

EQA10921 compile option

Explanation: Used to display a compile option without
parameters, for example, NOTEST.

EQA10931 compile option (compile suboption)

Explanation: Used to display a compile option with
one parameter, for example, OPT.

EQA10941 compile option (compile suboption, compile
suboption)

Explanation: Used to display a compile option with
two parameters, for example, TEST.

EQA1095I This program has no subblocks.

Explanation: A DESCRIBE PROGRAM command
refers to a program that is totally contained in one
block.

EQA10961 The subblocks in this program are
nested as follows:

Explanation: The names of the blocks contained by
the program are displayed under this title line.

Appendix F. Debug Tool Messages 357

EQA10971 « EQA11171

EQA10971 space characters block name

Explanation: The first insert controls the indentation

while the second is the block name without qualification.

EQA11071I There are no open files.

Explanation: This is issued in response to DESCRIBE
ENVIRONMENT if no open files are detected.

EQA10981 The statement table has the short format.

Explanation: The statement table is abbreviated such
that no relationship between storage locations and
statement identifications can be determined.

Programmer Response: If statement identifications
are required, the program must be recompiled with
different compile-time parameters.

EQA10991 The statement table has the NUMBER
format.

Explanation: The program named in the DESCRIBE
PROGRAM command was compiled with GONUMBER
assumed.

EQA1100I The statement table has the STMT
format.

Explanation: The program named in the DESCRIBE
PROGRAM command was compiled with GOSTMT
assumed.

EQA11011 file name

Explanation: This message is used in listing items
returned from the back end in response to the
DESCRIBE ENVIRONMENT command.

EQA11021 ATTRIBUTES for variable name

Explanation: Text of a DESCRIBE ATTRIBUTES
message.

EQA1103I Its address is address

Explanation: Text of a DESCRIBE ATTRIBUTES
message.

EQA11041 Compiler: Compiler version

Explanation: Indicate compiler version for DESCRIBE
Cu.

EQA1105I lts length is length

Explanation: Text of a DESCRIBE ATTRIBUTES
message.

EQA11061I Programming language COBOL does not
return information for DESCRIBE
ENVIRONMENT

Explanation: COBOL run-time library does not return
information to support this command.

358 Debug Tool/VSE V1R1 User's Guide and Reference

EQA1108I The following conditions are enabled:

Explanation: This is the header message issued in
response to DESCRIBE ENVIRONMENT before issuing
the list of enabled conditions.

EQA1109I The following conditions are disabled:

Explanation: This is the header message issued in
response to DESCRIBE ENVIRONMENT before issuing
the list of disabled conditions.

EQA1110I This program has no Statement Table.

Explanation: This message is used for the
DESCRIBE CU command. If a CU was compiled with
NOTEST, no statement table was generated.

EQA11111 Attributes for names in block block name

Explanation: This is a title line that is the result of a
DESCRIBE ATTRIBUTES *;. It precedes the names of
all variables contained within a single block.

EQA11121 variable name and/or attributes

Explanation: The first insert controls the indentation
while the second is the qualified variable name followed
by attribute string. (for C, only the attributes are given.)

EQA11141I Currently open files are:

Explanation: This is the title line for the list of files
that are known to be open. This is in response to the
DESCRIBE ENVIRONMENT command.

EQA1115I The program has insufficient compilation
information for the DESCRIBE CU
command.

Explanation: This program has insufficient
information. It may be compiled without the test option.

EQA1116I Common LE/VSE math library is being
used

Explanation: This is the response for the DESCRIBE
ENVIRONMENT command when the LE/VSE math
library is being used.

EQA11171 PL/I Math library is being used

Explanation: This is the response for the DESCRIBE
ENVIRONMENT command when the PL/I math library
is being used.

EQA1140I « EQA11591

EQA11401 character

Explanation: This message is used to produce output
for LIST (...).

EQA11411 expression name
= expression value

Explanation: This message is used to produce output
for LIST TITLED (...) when an expression is a scalar.

EQA11511I The following names are known in block
block name

Explanation: This is a title line that is the result of a
LIST NAMES command. It precedes the names of all
variables contained within a single block.

EQA11421 expression element

Explanation: This insert is used for naming the
expression for expression element.

EQA11521I The following session hames are known

Explanation: This is a title line that is the result of a
LIST NAMES command. It precedes the names of all
session variables contained within a single block.

EQA1143I >>> EXPRESSION ANALYSIS <<<

Explanation: First line of output from the ANALYZE
EXPRESSION command

EQA1153I The following names with pattern pattern
are known in block name

Explanation: This title line precedes the list of variable
names that satisfy the pattern in a LIST NAMES
command.

EQA11441 alignment spaces It is a bit field with
offset bit offset.

Explanation: Text of a DESCRIBE ATTRIBUTES
message.

EQA1145I Its Offset is offset.

Explanation: Text of a DESCRIBE ATTRIBUTES
message.

EQA11541 The following session names with
pattern pattern are known

Explanation: This title line precedes the list of session
names that satisfy the pattern in a LIST NAMES
command.

EQA11461 column elements

Explanation: This message is used to produce a
columned list. For example, it is used to format the
response to LIST STATEMENT NUMBERS.

EQA1155I The following CUs are known in Phase
name:

Explanation: This title line precedes a list of compile
unit names for noninitial phases in a LIST NAMES CUS
command.

EQA11471 name

Explanation: The name of a variable that satisfies a
LIST NAMES request is displayed.

EQA11561I The following CUs with pattern pattern
are known in Phase name

Explanation: This title line precedes a list of compile
unit names for noninitial phases that satisfy the pattern
in a LIST NAMES CUS command.

EQA11481 name structure

Explanation: The name of a variable that satisfies a
LIST NAMES request is displayed. It is contained
within an aggregate but is a parent name and not an
elemental data item.

EQA11491 name in parent name

Explanation: The name of a variable that satisfies a
LIST NAMES request is displayed. It is contained
within an aggregate and is an elemental data item.

EQA1150I name structure in parent name

Explanation: The name of a variable that satisfies a
LIST NAMES request is displayed. It is an aggregate
contained within another aggregate.

EQA11571I There are no CUs with pattern pattern in
Phase name.

Explanation: This line appears when no compile unit
satisfied the pattern in a LIST NAMES CUS command
for noninitial phases.

EQA1158I The following CUs have pattern pattern

Explanation: This title line precedes a list of compile
unit names for an initial phase in a LIST NAMES CUS
command.

EQA11591 There are no CUs with pattern pattern.

Explanation: This line appears when no compile unit
satisfied the pattern in a LIST NAMES CUS command
for an initial phase.

Appendix F. Debug Tool Messages 359

EQA1160I « EQA11811

EQA1160I There are no Procedures with pattern
pattern.

Explanation: This line appears when no Procedures
satisfied the pattern in a LIST NAMES PROCEDURES
command.

EQA11611I The following Procedures have pattern
pattern:

Explanation: This title line precedes a list of
Procedure names for a LIST NAMES PROCEDURES
command.

EQA11621 There are no names in block block name

Explanation: The LIST NAMES command found no
variables in the specified block.

EQA11631 There are no session names.

Explanation: The LIST NAMES command found no
variables that had been declared in the session for the
current programming language.

EQA11641 There are no names with pattern pattern
in block name.

Explanation: The LIST NAMES command found
named variables in the named block but none of the
names satisfied the pattern.

EQA1165I There are no session names with pattern
pattern.

Explanation: The LIST NAMES command found
named variables that had been declared in the session
but none of the names satisfied the pattern.

EQA11661 There are no known session procedures.

Explanation: A LIST NAMES PROCEDURES was
issued but no session procedures exist.

EQA11671 register name = register value

Explanation: Used when listing registers.

EQA1168I No LIST STORAGE data is available for
the requested reference or address.

Explanation: The given reference or address is
invalid.

EQA11691I No frequency data is available

Explanation: This message is issued upon failure to
find frequency information.

360 Debug Tool/VSE V1R1 User's Guide and Reference

EQA11701I Frequency of verb executions in cu_name

Explanation: This is the header produced by the LIST
FREQUENCY command.

EQA11711 character string = count

Explanation: This is the frequency count produced by
the LIST FREQUENCY command.

EQA11721I TOTAL VERBS= total statements, TOTAL
VERBS EXECUTED= fotal statements
executed, PERCENT EXECUTED= percent
executed

Explanation: This is the trailer produced by the LIST
FREQUENCY command.

EQA11731I (history number) ENTRY hook for cu_name
Explanation: This is a LIST HISTORY message.

EQA11741 (history number) ENTRY hook for block
block name in cu_name

Explanation: This is a LIST HISTORY message.

EQA11751 (history number) EXIT hook for cu_name
Explanation: This is a LIST HISTORY message.

EQA11761 (history number) EXIT hook for block block
name in cu_name

Explanation: This is a LIST HISTORY message.

EQA11771 (history number) STATEMENT hook at
statement cu_name :> statement _id

Explanation: This is a LIST HISTORY message.

EQA11781 (history number) PATH hook at statement
cu_name :> statement_id

Explanation: This is a LIST HISTORY message.

EQA11791 (history number) Before CALL hook at
statement cu_name :> statement _id

Explanation: This is a LIST HISTORY message.

EQA11801 (history number) CALL CEETEST at
statement cu_name :> statement_id

Explanation: This is a LIST HISTORY message.

EQA11811I (history number) Waiting for program
input from filename

Explanation: This is a LIST HISTORY message.

EQA1182I « EQA12391

EQA1182I (history number) LOAD occurred at
statement cu_name :> statement_id

Explanation: This is a LIST HISTORY message.

EQA1183I (history number) DELETE occurred at
statement cu_name :> statement _id

Explanation: This is a LIST HISTORY message.

EQA12301I The program is currently executing
prolog code for block name.

Explanation: Shows the bearings in an interrupted
program.

EQA11841 (history number) condition name raised at
statement cu_name :> statement_id

Explanation: This is a LIST HISTORY message.

EQA1231I You are executing commands within a
__ctest function.

Explanation: Shows the bearings in an interrupted
program.

EQA11851I (history number) LABEL hook at statement
cu_name :> statement_id

Explanation: This is a LIST HISTORY message.

EQA1232I You are executing commands within a
CEETEST function.

Explanation: Shows the bearings in an interrupted
program.

EQA11861I Unable to display value of variable name.
Use LIST (variable name) for further
details

Explanation: This is used to inform the user that for
some reason one of the variables cannot be displayed
for LIST TITLED.

EQA12331 The established MONITOR commands
are:

Explanation: This is the header produced by LIST
MONITOR.

EQA11871 There are no data members in the
requested object.

Explanation: The requested object does not contain
any data members. It contains only methods.

EQA12341 MONITOR monitor number monitor type

Explanation: This is the line produced by LIST
MONITOR before each command is displayed

EQA12261 The EQUATE named EQUATE name is
replaced.

Explanation: This alerts the user to the fact that a
previous EQUATE existed and was replaced.

Programmer Response: Verify that this was intended.

EQA12351 The command for MONITOR monitor
number monitor type is:

Explanation: This is the header produced by LIST
MONITOR monitor number.

EQA12271 The following EQUATE definitions are in
effect:

Explanation: This is the header for the QUERY
EQUATES command.

EQA12361 The MONITOR monitor number command
is replaced.

Explanation: This is a safety message: the user is
reminded that a MONITOR command is replacing an
old one.

EQA12371 The current qualification is block name.

Explanation: Shows the current point of view.

EQA12281 EQUATE identifier = " EQUATE string"

Explanation: Used to display EQUATE identifiers and
their associated strings. The string is enclosed in
quotation marks so that any leading or trailing blanks
are noticeable.

EQA12381 The current location is cu_name :>
statement id.

Explanation: Shows the place where the program was
interrupted.

EQA12291 The program is currently exiting block
block name.

Explanation: Shows the bearings in an interrupted
program.

EQA12391 The program is currently entering block
block name.

Explanation: Shows the bearings in an interrupted
program.

Appendix F. Debug Tool Messages 361

EQA12401 « EQA12871

EQA1240I You are executing commands within a
CALL PLITEST statement.

Explanation: Shows the bearings in an interrupted
program.

EQA12411I You are executing commands from the
run-time command-list.

Explanation: Shows the bearings in an interrupted
program.

EQA12421I You are executing commands in the
breakpoint-id breakpoint.

Explanation: Shows the bearings in an interrupted
program.

EQA12431 The setting of SET-command object is
status

Explanation: The status of the object of a SET
command is displayed when QUERYed individually.

EQA12441 SET-command object status

Explanation: The status of the object of a SET
command is displayed when issued as part of QUERY
SET.

EQA12451 The current settings are:
Explanation: This is the header for QUERY SET.

EQA12461 PFKEY string command

Explanation: Used to display PFKEYS as part of
QUERY PKFEYS.

EQA12471 colored area color hilight intensity

Explanation: Used to display SCREEN as part of
QUERY SCREEN.

EQA1248I You were prompted because STEP
ended.

Explanation: Shows the bearings in an interrupted
program.

EQA12491 character string - The QUERY source
setting file name is not available.

Explanation: The source listing file is not available.
The source listing was not required or set prior to this
command.

362 Debug Tool/VSE VIR1 User's Guide and Reference

EQA1250I SET INTERCEPT is already set on or off
for FILE filename.

Explanation: You tried to issue the SET INTERCEPT

ON/OFF for a file that is already set to ON/OFF. This is
just an informational message to notify you that you are
trying to duplicate the current setting. The command is

ignored.

EQA12761 TEST:

Explanation: Debug Tool is ready to accept a
command from the terminal.

Programmer Response: Enter a command. If you
are not sure what you can enter, enter HELP or ?.
Information is displayed identifying the commands you
are allowed to enter.

EQA12771 The USE file is empty.

Explanation: Debug Tool tried to read commands
from an empty USE file. If unintentional, this could be
because of an incorrect file specification.

Programmer Response: Correct the file specification
and retry.

EQA12781 alignment spaces command part

Explanation: This is part of a command that is being
displayed in the log or in response to a LIST AT. Since
a group of commands can be involved, their
appearance is improved by indenting the subgroups.
Therefore, the first insert is used for indentation, and
the second to contain the command. This is the
command as it is understood by Debug Tool.

¢ Truncated keywords are no longer truncated.

¢ Lowercase to uppercase conversion was done
where appropriate.

¢ Only a single command is contained in a record. If
multiple commands are involved, additional records
are prepared using this format.

EQA12861 (Application program has terminated)

Explanation: Debug Tool is ready to accept a
command from the terminal. This message is used in
full-screen mode when an initial prompt occurs at the
termination of the application program.

EQA12871 Unknown

Explanation: Debug Tool is ready to accept a
command from the terminal. This message is used in
full-screen mode when an initial prompt occurs and the
location is unknown.

EQA1288I « EQA1333I

EQA1288I initialization

Explanation: Debug Tool is ready to accept a
command from the terminal. This message is used in
full-screen mode when an initial prompt occurs after
Debug Tool initialization and before any program hooks
are reached.

EQA12891 filename: program output

Explanation: Displays program output with the
filename (DLBL) preceding the output.

EQA12901I The program is waiting for input from
filename

Explanation: Debug Tool has gained control because
the program is waiting for input.

EQA12911I Use the INPUT command to enter recsize
characters for the intercepted
fixed-format file.

Explanation: Prompts you for intercepted input of
fixed-format file.

EQA12921I Use the INPUT command to enter up to a
maximum of recsize characters for the
intercepted variable-format file.

Explanation: Prompt user for intercepted input of
variable-formatted file.

EQA1306I You were prompted because the
CONDITION name condition was raised
in your program.

Explanation: The program has stopped running due to
the occurrence of the named condition.

EQA13071 You were prompted because an attention
interrupt occurred.

Explanation: The attention request from the terminal
was recognized and the Debug Tool was given control.

EQA1308I You were prompted because a condition
was raised in your program.

Explanation: The program stopped running due to the
occurrence of a condition whose name is unknown.

EQA13091 CONDITION name is a severity or class
SEVERITY code condition.

Explanation: The condition named is described by its
severity level or class code. See LE/VSE Programming
Guide.

EQA13161I Block block name contains the following
statements:

Explanation: This message precedes the message
that identifies all statement numbers in the block.

EQA13171 block level space characters block name

Explanation: This message is used instead of
EQA10971 when the number of block levels is greater
than the indentation allowed.

EQA13261 character string

Explanation: This message is used during product
development and service.

EQA13271 character string character string

Explanation: This message is used during product
development and service.

EQA13291 The procedure named procedure name
has the form:

Explanation: This is the information that is produced
when a LIST PROCEDURE command is processed.
This message is followed by a message of one or more
lines showing the commands that form the procedure.

EQA1330I You are not currently within a procedure.

Explanation: The LIST PROCEDURE command was
issued without naming a session procedure and the
current command context is outside of a session
procedure.

Programmer Response: Verify the request. Reenter
the command and name a specific procedure if
necessary.

EQA1331I The RETRIEVE queue is empty.

Explanation: There are no entries in the retrieve
queue.

EQA13321I FIND has continued from top of area.

Explanation: FIND searched the file to the end of the
string without finding it and continues the search from
the top, back to the starting point of the search.

EQA1333I The string was found.

Explanation: FIND was successful in locating the
target string.

Appendix F. Debug Tool Messages 363

EQA13341 « EQA1408E

EQA13341I The operating system has generated the
following message:

Explanation: The Operating System can issue its own
messages. These are relayed to the user.

EQA13351I OS message

Explanation: The operating system can issue its own
messages. These are relayed to the user.

EQA13361 Debug Tool for VSE/ESA Version 1
Release 1 Mod 0 time stamp (C)
Copyright IBM Corp. 1992, 1996

Explanation: This message is used to place the
Debug Tool logo, a timestamp, and copyright at the
beginning of the log.

EQA13441 The OTHERWISE statement would have
been executed but was not present

Explanation: The was no OTHERWISE clause
present in the SELECT statement and none of the
WHEN clauses were selected. This message is simply
indicating that the OTHERWISE clause would have
been executed if it had been present.

EQA1400E The value entered is invalid.

Explanation: The user entered an invalid value.

EQA1401E The command entered is not a valid
panel sub-command.

Explanation: The user entered a command not
recognized by panel processor.

EQA13371 - Its address is address and its length is
length

Explanation: Text of a DESCRIBE ATTRIBUTES
message for PL/I.

EQA1402E Each window must have unique letters
of L, M, and S.

Explanation: The user entered either duplicated
letters or just one letter.

EQA1338I - Its offset is offset and its length is length

Explanation: Text of a DESCRIBE ATTRIBUTES
message for PL/I.

EQA1403E Invalid prefix command was entered.

Explanation: The user entered an invalid prefix
command.

EQA13391I - Its length is length

Explanation: Text of a DESCRIBE ATTRIBUTES
message for PL/I.

EQA1404E Search target not found.

Explanation: The target for the search command was
not found.

EQA13401 - Its address is address

Explanation: Text of a DESCRIBE ATTRIBUTES
message for PL/I.

EQA13411 - Its Offset is offset

Explanation: Text of a DESCRIBE ATTRIBUTES
message for PL/I.

EQA13421 ATTRIBUTES for variable name variable
type

Explanation: Text of a DESCRIBE ATTRIBUTES

message for PL/I.

EQA1343I Presently not in accessible storage

Explanation: The requested variable cannot be
accessed.

364 Debug Tool/VSE V1R1 User's Guide and Reference

EQA1405E No previous search arguments exist;
find not performed.

Explanation: A FIND command was issued without an
argument. Since the FIND command had not been
issued previously, Debug Tool had nothing to search
for.

EQA1406E Invalid window id

Explanation: The window header field contains an
invalid window ID. Valid window IDs are SOURCE,
MONITOR, and LOG.

EQA1407E Invalid scroll amount entered.

Explanation: Scroll field contains an invalid scroll
amount.

EQA1408E Duplicate window ID

Explanation: More than one window header field
contains the same window id.

EQA1430W - EQA1461E

EQA1430W The EQUATE named EQUATE name was
has not been established.

Explanation: CLEAR EQUATE <name> was
attempted for an EQUATE name that has not been
established.

Programmer Response: For a list of the current
EQUATES definitions, issue QUERY EQUATES.

EQA1452E argument name is not a valid argument.

Explanation: The specified argument is not valid.

EQA1453E The number of arguments is not correct.

Explanation: There are either too many or too few
arguments specified.

EQA1431W There are no EQUATE definitions in
effect.

Explanation: CLEAR EQUATE or QUERY EQUATES
was issued but there are no EQUATE definitions.

EQA1432E function is not supported.
Explanation: Language/Country is not supported.

Programmer Response: Set National Language and
Country.

EQA1433E Switching to the programming language
language-name is invalid because there
are no language-name compilation units
in the initial phase.

Explanation: A SET PROGRAMMING LANGUAGE
command was issued, but the initial phase contains no
compilation units compiled in the language specified (or
implied).

EQA1434E Error in setting debug name to
299999777

Programmer Response: Refer to the maximum
number of CUs allowed for debugging.

EQA1435E Error in setting name.

Explanation: This is a generic message for SET
command errors.

EQA1436W SET EXECUTE is OFF -- command will
not be executed.

Explanation: The command was parsed but not
executed.

EQA1450E Unable to display the result from
expression evaluation

Explanation: The entire result from the expression
evaluation cannot be displayed; for example, the array
is too large.

EQA1451E operand contains incompatible data type.

Explanation: Comparison or assignment involves
incompatible data types.

EQA1454E operand name is not a valid operand.

Explanation: The specified operand is undefined or is
an invalid literal.

EQA1455E An unsupported operator/operand is
specified.

Explanation: An operator or an operand was not
understood, and therefore was not processed.

EQA1456S The variable variable name is undefined
or is incorrectly qualified.

Explanation: The named variable could not be located
or undefined.

Programmer Response: You need to qualify to a
different block in order to locate the variable.

EQA1457E The exponent exponent contains a
decimal point. This feature is not
supported.

Explanation: No decimal point is allowed in exponent
specification.

EQA1458E The address of data item has been
determined to be invalid.

Explanation: This can happen for items within a data
record where the file is not active or the record area is
not available; for items in a structure following Occurs,
depending on the item where the ODO variable was not
initialized; or before program initialization.

EQA1459E literal string is not a valid literal.

Explanation: The combination of characters specified
for the literal is not a valid literal.

EQA1460E Operand operand name should be
numeric.

Explanation: A non-numeric operand was found
where a numeric operand was expected.

EQA1461E Invalid data for data item is found.

Explanation: The memory location for a data item
contains data that is inconsistent with the data type of
the item. The item may not have been initialized.

Appendix F. Debug Tool Messages 365

EQA1462E - EQA1481E

EQA1462E Invalid sign for data item is found.

Explanation: The sign position of a signed data item
contains an invalid sign. The item may not have been
initialized.

EQA1472E Invalid specification of reference
modification.

Explanation: The specification of the reference
modification is not consonant with the length field.

EQA1463E A divisor of 0 is detected in a divide
operation.

Explanation: The expression contains a divide
operation where the divisor was determined to be zero.

EQA1464E data item is used as a receiver but it is
not a data name.

Explanation: The target of an assignment is not valid.

EQA1465E The TGT for a program is not available.

Explanation: The program may have been deleted or
canceled.

EQA1466E data item is not a valid subscript or
index.

Explanation: The subscript or index may be out of
range or an ODO variable may not be initialized.

EQA1467E No subscript or index is allowed for data
item

Explanation: One or more subscripts or indexes were
specified for a data item that was not defined as a
table. The reference to the data item is not allowed.

EQA1468E Missing subscripts or indexes for data
item

Explanation: A data item defined as a table was

referenced without specifying any subscripts or indexes.

The reference is not allowed.

EQA1469E Incorrect number of subscripts or
indexes for data item

Explanation: A data item defined as a table was
referenced with incorrect number of subscripts or
indexes. The reference is not allowed.

EQA1470E Incorrect length specification for data
item

Explanation: The length of a data item is incorrect for
the definition, usually due to a faulty ODO object.

EQA1471E Incorrect value for ODO variable data
item

Explanation: The ODO variable may not have been
initialized, or the current value is out of range.

366 Debug Tool/VSE V1R1 User's Guide and Reference

EQA1473E Invalid zero value for data item

Explanation: The value of a data item is zero. A zero
is invalid in the current context.

EQA1474E procedure name was found where a data
name was expected.

Explanation: Invalid name is specified for a data item.

EQA1475E data item is an invalid qualifier in a
qualified reference.

Explanation: A qualified reference is invalid. One or
more qualifiers might be undefined or not in the same
structure as the desired data item.

EQA1476E Too many qualifiers in a qualified
reference.

Explanation: The qualified reference contains more
than the legal number of qualifiers.

EQA1477E DATA DIVISION does not contain any
entries.

Explanation: There is no data to display for a LIST *
request because the DATA DIVISION does not contain
any entries.

EQA1478E No status available for sort file sort file

Explanation: Status was requested for a sort file.
There is never a status available for a sort file.

EQA1479E Unable to locate any TGT.

Explanation: An attempt to locate any TGT failed. No
COBOL program exists in TEST mode.

EQA1480E operand name is an invalid operand for
SET command.

Explanation: The operands for a SET command are
incorrect. At least one of the operands must be index
name.

EQA1481E Too many digits for the exponent of
floating point literal data item

Explanation: The exponent specified for a
floating-point literal contains too many digits.

EQA1482E - EQA1494S

EQA1482E command name command is terminated
due to an error in processing.

Explanation: The command is terminated
unsuccessfully because an error occurred during
processing.

EQA1483E reference could not be formatted for
display.

Explanation: The requested data item could not be
displayed due to an error in locating or formatting the
data item.

EQA1484E Resources (for example, heap storage)
are not available for processing and the
command is terminated unsuccessfully.

Explanation: The command could not be completed
due to inadequate resources.

Programmer Response: Increase the partition size
and restart Debug Tool.

EQA1485E The command is not supported because
the CU is compiled with incorrect
compile-time options.

Explanation: For COBOL, the CUs must be compiled
with VS COBOL Il Version 1 Release 4 and the
compile-time TEST or FDUMP option, or IBM COBOL
for VSE/ESA and the compile-time TEST option.

EQA1486E variable name is presently not in
accessible storage.

Explanation: The variable may be CONTROLLED or
AUTOMATIC and does not yet exist.

EQA1487S The number of dimensions for variable
name is number -- but number have been
specified.

Explanation: The wrong number of subscripts were
specified with the variable reference.

EQA1488E The indices in variable name are invalid.
Use the DESCRIBE ATTRIBUTES
command (without any indices specified)
to see the valid indices.

Explanation: The subscripts with the variable
reference do not properly relate to the variable's
characteristics.

EQA1489S variable name is not a based variable but
a locator has been supplied for it.

Explanation: A pointer cannot be used unless the
variable is BASED.

Programmer Response: Use additional qualification
to get to the desired variable.

EQA1490S variable name cannot be used as a
locator variable.

Explanation: Only variables whose data type is
POINTER or OFFSET can be used to locator with other
variables.

EQA1491S There is no variable named character
string, and if it is meant to be a built-in
function, the maximum number of
arguments to the character string built-in
function is number, but number were
specified.

Explanation: A subscripted variable could not be
found. Its name, however, is also that of a PL/I built-in
function. If the built-in function was intended, the wrong
number of arguments were present.

EQA1492S There is no variable named character
string, and if it is meant to be a built-in
function, the minimum number of
arguments to the character string built-in
function is number, but number were
specified.

Explanation: A subscripted variable could not be
found. Its name, however, is also that of a PL/I built-in
function. If the built-in function was intended, more
arguments must be present.

EQA1493E There is no variable named character
string, and if it is meant to be a built-in
function, remember built-in functions are
allowed only in expressions.

Explanation: A variable could not be found. Its name,
however, is also that of a PL/I built-in function. If the
built-in function was intended, it is not in the correct
context. Note that in Debug Tool, pseudo-variables
cannot be the target of assignments.

EQA1494S variable name is an aggregate. It cannot
be used as a locator reference.

Explanation: The variable that is being as a locator is
not the correct data type.

Appendix F. Debug Tool Messages 367

EQA1495S « EQA1509E

EQA1495S The name variable name is ambiguous
and cannot be resolved.

Explanation: Names of structure elements can be
ambiguous if not fully qualified. For example in DCL 1
A, 2 B, 3Z POINTER, 2 C, 3 Z POINTER, the names Z
and A.Z are ambiguous.

Programmer Response: Retry the command with
enough qualification so that the name is unambiguous.

EQA1496S The name variable name refers to a
structure, but structures are not
supported within this context.

Explanation: Given DCL 1 A, 2 B FIXED, 2 C FLOAT,
the name A refers to a structure.

Programmer Response: Break the command into
commands for each of the basic elements of the
structure, or use the DECLARE command with a
BASED variable to define a variable overlaying the
structure.

EQA1497S An aggregate cannot be used as an
index into an array.

Explanation: Given DCL A(2) FIXED BIN(15) and
DCL B(2) FIXED BIN(15), references to A(B), A(B+2),
and so on are invalid.

Programmer Response: Use a scalar as the index.

EQA1498S Generation and recursion numbers must
be positive.

Explanation: In %GENERATION(x,y) and
%RECURSION(x,y), y must be positive.

EQA1499S Generation and recursion expressions
cannot be aggregate expressions.

Explanation: In %GENERATION(x,y) and
%RECURSION(x,y), y must be a scalar.

EQA1500S %RECURSION can be applied only to
parameters and automatic variables.

Explanation: In %RECURSION(x,y), x must be a
parameter or an automatic variable

EQA1501S %RECURSION number of procedure name
does not exist. The present number of
recursions of the block block name is
number.

Explanation: In %RECURSION(x,y), y must be no
greater than the number of recursions of the block
where x is declared.

368 Debug Tool/VSE V1R1 User's Guide and Reference

EQA1502S %Generation can be applied only to
controlled variables.

Explanation: In %GENERATION(x,y), x must be
controlled.

EQA1503S %Generation number of variable name
does not exist. The present number of
allocations of variable name is number.

Explanation: In %GENERATION(x,y), y must be no
greater than the number of allocations of the variable x.

EQA1504S %Generation number of %RECURSION
(procedure name, number) does not exist.
The present number of allocations of
%RECURSION (procedure name, number)
is number.

Explanation: In %GENERATION(x,y), y must be no
greater than the number of allocations of the variable x.

EQA1505S The variable variable name belongs to a
FETCHed procedure and is a
CONTROLLED variable that is not a
parameter. This violates the rules of
PL/.

Explanation: PL/l does not allow FETCHed
procedures to contain CONTROLLED variable types.

Programmer Response: Correct the program.

EQA1506S The variable character string cannot be
used.

Explanation: The variable belongs to the class of
variables, such as members of structures with REFER
statements, which Debug Tool does not support.

EQA1507E The expression in the QUIT command
must be a scalar that can be converted
to an integer value.

Explanation: The expression in the QUIT command
cannot be an array, a structure or other data aggregate,
and if it is a scalar, it must have a type that can be
converted to integer.

EQA1508E An internal error occurred in C run time
during expression processing.

Explanation: This message applies to C. An internal
error occurred in the C run time and the command is
terminated.

EQA1509E The unary operator operator name
requires a scalar operand.

Explanation: This message applies to the C unary
operator ! (logical negation).

EQA1510E « EQA1527E

EQA1510E The unary operator operator name
requires a modifiable lvalue for its
operand.

Explanation: This message applies to the C unary
operators ++ and --.

EQA1519E A real type cannot be cast to a pointer
type.
Explanation: This message applies to C type casts. In

the example 'float f;', the type cast '(float *) f' is
invalid.

EQA1511E The unary operator operator name
requires an integer operand.

Explanation: This message applies to the C unary
operator (bitwise complement).

EQA1520E A pointer type cannot be cast to a real
type.

Explanation: Invalid operand for the type cast
operator.

EQA1512E The unary operator operator requires an
operand that is either arithmetic or a
pointer to a type with defined size.

Explanation: This message applies to the C unary
operators + and -. These operators cannot be applied to
pointers to void-function designators, or pointers to
functions.

EQA1513E The unary operator operator requires an
arithmetic operand.

Explanation: This message applies to the C unary
operator + and -.

EQA1514E Too many arguments specified in
function call.

Explanation: This message applies to C function calls.

EQA1515E Too few arguments specified in function
call.

Explanation: This message applies to C function calls.

EQA1516E The logical operator operator requires a
scalar operand.

Explanation: This message applies to the C binary
operators && (logical and) and Il (logical or).

EQA1517E The operand of the type cast operator
must be scalar.

Explanation: This message applies to the C type
casts.

EQA1518E The named type of the type cast
operator must not be an expression.

Explanation: This message applies to the C type
casts.

EQA1521E The operand in a typecast must be
scalar.

Explanation: This message applies to C type casts.

EQA1522E Argument argument in function call
function has an invalid type.

Explanation: This message applies to C function calls.

EQA1523E Invalid type for function call.

Explanation: This message applies to C function calls.

EQA1524E The first operand of the subscript
operator must be a pointer to a type with
defined size.

Explanation: This message applies to the C subscript
operator. The subscript operator cannot be applied to
pointers to void, function designators or pointers to
functions.

EQA1525E Subscripts must have integer type.

Explanation: This message applies to the C subscript
operator.

EQA1526E The first operand of the sizeof operator
must not be a function designator, a
typedef, a bitfield or a void type.

Explanation: This message applies to the C unary
operator sizeof.

EQA1527E The second operand of the operator
operator must be a member of the
structure or union specified by the first
operand.

Explanation: This message applies to the C operators
(select member) and -> (point at member).

Appendix F. Debug Tool Messages 369

EQA1528E « EQA1543E

EQA1528E The first operand of the operator operator
must have type pointer to struct or
pointer to union.

Explanation: This message applies to the C operator
-> (point at member).

EQA1536E The operand of the address operator
must be a function designator or an
Ivalue that is not a bitfield.

Explanation: This message applies to the C unary
operator & (address).

EQA1529E The operand of the operator operator
must be an array, a function designator,
or a pointer to a type other than void.

Explanation: This message applies to the C
indirection operator.

EQA1530E The first operand of the operator operator
must have type struct or union.

Explanation: This message applies to the C subscript
operator (select member).

EQA1537E Invalid constant for the C language.

Explanation: This message applies to C constants.

EQA1538E Argument argument in function call
function is incompatible with the function
definition. Since Warning is on, the
function call is not made.

Explanation: This message applies to C function calls.
The argument must have a type that would be valid in
an assignment to the parameter.

EQA1531E The relational operator operator requires
comparable data types.

Explanation: This message applies to the C relational
operators. For example, <, >, <=, >=, and ==.

EQA1532E The subtraction operator requires that
both operands have arithmetic type or
that the left operand is a pointer to a
type with defined size and the right
operand has the same pointer type or an
integral type.

Explanation: This message applies to the C binary
operator -. The difference between two pointers to void
or two pointers to functions is undefined because sizeof
is not defined for void types and function designators.

EQA1533E Assignment contains incompatible types.

Explanation: This message applies to C assignments,
for example, +=, -=, and *=.

EQA1534E The TEST expression in the switch
operator must have integer type.

Explanation: This applies to the test expression ina C
switch command.

EQA1535E The addition operator requires that both
operands have arithmetic or that one
operand has integer type and the other
operand is a pointer to a type with
defined size.

Explanation: This message applies to the C binary
operator +.

370 Debug Tool/VSE VIR1 User's Guide and Reference

EQA1539E The binary operator operator requires
integer operands.

Explanation: This message applies to the C binary
operator % (remainder), << (bitwise left shift), >>
(bitwise right shift), & (bitwise and), ??-"' (bitwise
exclusive or), |(bitwise inclusive or), and the
corresponding assignment operators (for example, %=,
and <<=).

EQA1540E The binary operator operator requires a
modifiable Ivalue for its first operand.

Explanation: This message applies to the C binary
assignment operators.

EQA1541E The binary operator operator requires
arithmetic operands.

Explanation: This message applies to the C binary
operators * and /.

EQA1542E Source in assignment to an enum is not
a member of the enum. Since Warning
is on, the operation is not performed.

Explanation: This message applies to C. You
attempted to assign a value to enum, but the value is
not legitimate for that enum.

EQA1543E Invalid value for the shift operator
operator. Since Warning is on, the
operation will not be performed.

Explanation: This message applies to the C binary
operators << (bitwise left shift) and >> (bitwise right
shift). Shift values must be nonnegative and less than
33. These tests are made only when WARNING is on.

EQA1544E « EQA1561E

EQA1544E Array subscript is negative. Since
Warning is on, the operation is not
performed.

Explanation: This message applies to the C
subscripts.

EQA1545E Array subscript exceeds maximum
declared value. Since Warning is on, the
operation is not performed.

Explanation: This message applies to the C
subscripts.

EQA1546E ZeroDivide would have occurred in
performing a division operator. Since
Warning is on, the operation is not
performed.

Explanation: Divide by zero is detected by C run time.

EQA1547E variable is presently not in accessible
storage.

Explanation: This message applies to C. Use the
LIST NAMES command to list all known variables.

EQA1548E There is no variable named variable

Explanation: This message applies to C. Use the
LIST NAMES command to list all known variables.

EQA1549E The function call function is not
performed because the function linkages
do not match.

Explanation: This message applies to C function calls
and can occur,for example, when a function's linkage is
specified as CEE, but the function was compiled with
linkage OS.

EQA1550E There is no typedef identifier named
name

Explanation: This message applies to C. The
message is issued, for example, in response to the
command 'DESCRIBE ATTRIBUTE typedef x', if x is
not a typedef identifier.

EQA1551E name is the name of a member of an
enum type.

Explanation: This message applies to C.

EQA1552E The name name is invalid.

Explanation: This message applies to C declarations.

EQA1553E Linkage type for function call function is
unknown.

Explanation: This message applies to C function calls.

EQA1554E Function call function has linkage type
PL/I, which is not supported.

Explanation: This message applies to C function calls.

EQA1555E Function call function has linkage type
FORTRAN which is not supported.

Explanation: This message applies to C function calls.

EQA1556E name is a tag name. This cannot be
listed since it has no storage associated
with it.

Explanation: This message applies to C tag names.

EQA1557E name is not an Ivalue. This cannot be
listed since it has no storage associated
with it.

Explanation: This message applies to C names.

EQA1558E name has storage class void, not
permitted on the LIST command.

Explanation: This message applies to C. In the
example 'void' funcname (...)', the command 'LIST
TITLED (funcname())' is invalid.

EQA1559E The second operand of the
%RECURSION operator must be
arithmetic.

Explanation: This message applies to C. In
%RECURSION(x,y), the second expression, y, must
have arithmetic type.

EQA1560E The second operand of the
%RECURSION operator must be positive.

Explanation: This message applies to C. In
%RECURSION(x,y), the second expression, y, must be
positive.

EQA1561E The first operand of the %RECURSION
operator must be a parameter or an
automatic variable.

Explanation: This message applies to C. In
%RECURSION(x,y), the first expression, x, must be a
parameter or an automatic variable.

Appendix F. Debug Tool Messages 371

EQA1562E « EQA1582E

EQA1562E The first operand of the %INSTANCE
operator must be a parameter or an
automatic variable.

Explanation: This message applies to C. In
%INSTANCE(x,y), the first expression, x, must be a
parameter or an automatic variable.

EQA1563E Generation specified for %RECURSION
is too large.

Explanation: This message applies to C. In
%RECURSION(x,y), the recursion number, y, exceeds
the number of generations of x that are currently active.

EQA1564E The identifier identifier has been replaced.

Explanation: This message applies to C declarations.

EQA1565E The declaration is too large

Explanation: This message applies to C declarations.

EQA1566E An attempt to modify a constant was
made. Since Warning is on, the operation
is not performed.

Explanation: This message applies to C.

EQA1567E An attempt to take the address of a
variable with register storage was made.
Since Warning is on, the operation is not
performed.

Explanation: This message applies to C.

EQA1568E Type of expression to %DUMP must be a
literal string.

Explanation: This message applies to CALL %DUMP
for C.

EQA1569E Octal constant is too long.

Explanation: This message applies to C constants.

EQA1570E Octal constant is too big.

Explanation: This message applies to C constants.

EQA1571E Hex constant is too long.

Explanation: This message applies to C constants.

EQA1572E Decimal constant is too long.

Explanation: This message applies to C constants.

EQA1573E Decimal constant is too big.

Explanation: This message applies to C constants.

372 Debug Tool/VSE VIR1 User's Guide and Reference

EQA1574E Float constant is too long.

Explanation: This message applies to C constants.

EQA1575E Float constant is too big.

Explanation: This message applies to C constants.

EQA1576E The environment is not yet fully
initialized.

Explanation: You can STEP and try the command

again.

EQA1577E Size of the aggregate is too large

Explanation: This message applies to PL/I constants.

EQA1578E Only "=" and "-=" are allowed as
operators in comparisons involving
program control data.

Explanation: Other relationships between program
control data are not defined.

Programmer Response: Check to see if a variable
was misspelled.

EQA1579E Program control data may be compared
only with program control data of the
same type.

Explanation: ENTRY vs ENTRY, LABEL vs LABEL,
etc. are okay. LABEL vs ENTRY is not.

EQA1580E Area variables cannot be compared.

Explanation: Equivalency between AREA variables is
not defined.

EQA1581E Aggregates are not allowed in
conditional expressions such as the
expressions in IF ... THEN, WHILE (...),
UNTIL (...), and WHEN (...) clauses.

Explanation: This is not supported.

Programmer Response: Check to see if the variable
name was misspelled. [f this was not the problem, you
must find other logic to perform the task.

EQA1582E Only "=" and "-=" are allowed as
operators in comparisons involving
complex numbers.

Explanation: Equal and not equal are defined for
complex variables, but you have attempted to relate
them in some other way.

EQA1583E « EQA1595W

EQA1583E Strings with the GRAPHIC attribute may
be concatenated only with other strings
with the GRAPHIC attribute.

Explanation: You are not allowed to concatenate
GRAPHIC (DBCS) strings to anything other than other
GRAPHIC (DBCS) strings.

EQA1584E Strings with the GRAPHIC attribute may
be compared only with other strings with
the GRAPHIC attribute.

Explanation: Equivalency between the GRAPHIC data
type and other data types has not been defined.

EQA1585E Only numeric data, character strings,
and bit strings may be the source for
conversion to character data.

Explanation: You are trying to convert something to a
character format when such a relationship has not been
defined.

EQA1586E Only numeric data, character strings,
and bit strings may be the source for
conversion to bit data.

Explanation: You are trying to convert something to a
bit format when such a relationship has not been
defined.

EQA1587E Only numeric data, character strings, bit
strings, and pointers may be the source
for conversion to numeric data.

Explanation: You are trying to convert something to a
numeric format when such a relationship has not been
defined.

EQA1588E Aggregates are not allowed in control
expressions.

Explanation: This message applies to PL/I constants.

EQA1589W CONVERSION would have occurred in
performing a CHARACTER to BIT
conversion, but since WARNING is on,
the conversion will not be performed.

Explanation: The specified conversion probably
contained characters that were something other than '0'
or '1". Since the conversion to BIT could therefore not
be done, this message is displayed rather than raising
the CONVERSION condition.

EQA1590W Varying string variable name has a
length that is greater than its declared
maximum. [t will not be used in
expressions until it is fixed.

Explanation: The variable named has been declared
as VARYING with length n, but its current length is
greater than n. The variable may be uninitialized or may
have been written over.

EQA1591W Varying string variable name has a
negative string length. It will not be
used in expressions until it is fixed.

Explanation: The variable named has been declared
as VARYING with length n, but its current length is less
than 0. The variable may be uninitialized or it may have
been written over.

EQA1592W Fixed decimal variable variable name
contains bad data. Since WARNING is
on, the operation will not be performed.

Explanation: A variable contains bad decimal data if
its usage would cause a data exception to occur (that
is, its numeric digits are not 0-9 or its sign indicator is
invalid), or it has even precision but its leftmost digit is
nonzero. LIST STORAGE can be used to find the
contents of the variable, and an assignment statement
can be used to correct them.

EQA1593W The size of AREA variable variable name
is less than zero. Since WARNING is on,
the operation will not be performed.

Explanation: Negative sizes are not understood and,
therefore, are not processed.

EQA1594W The size of AREA variable variable name
exceeds its declared maximum size.
Since WARNING is on, the operation will
not be performed.

Explanation: Performing the operation would alter
storage that is outside of the AREA. Such an operation
is not within PL/I, so will be avoided.

EQA1595W Fixed binary variable variable name
contains more significant digits than its
precision allows. Since WARNING is on,
the operation will not be performed.

Explanation: For example, a FIXED BIN(5,0) variable
can have only 5 significant digits thus limiting its valid
range of values to -32 through 31 inclusive.

Appendix F. Debug Tool Messages 373

EQA1596E « EQA1610E

EQA1596E The subscripted variable variable name
was not found. The name matches a
built-in function, but the parameters are
wrong.

Explanation: This message applies to PL/I constants.

EQA1597E AREA condition would have been raised

Explanation: This message applies to PL/I constants.

EQA1598E The bounds and dimensions of all arrays
in an expression must be identical.

Explanation: Array elements of an expression (such
as A + B or A = B) must all have the same number of
dimensions and the same lower and upper bounds for
each dimension.

EQA1599E You cannot assign an array to a scalar.

Explanation: The PL/I language does not define how
a scalar would represent an array; the assignment is
rejected as an error.

EQA1600E Aggregate used in wrong context.

Explanation: This message applies to PLI constants.

EQA1601E The second expression in the built-in
function name built-in function must be
greater than or equal to 1 and less than
or equal to the number of dimensions of
the first expression.

Explanation: The second expression of the named
built-in function is dependent upon the dimensions of
the array (the first built-in function argument).

Programmer Response: Correct the relationship
between the first and second arguments.

EQA1602E The second expression in the built-in
function name built-in function must not
be an aggregate.

Explanation: Debug Tool does not support aggregates
in this context.

EQA1603E The first argument in the built-in function
name built-in function must be an array
expression.

Explanation: The named built-in function expects an
array to be the first argument.

374 Debug Tool/VSE VIR1 User's Guide and Reference

EQA1604E Argument number number in the built-in
function name built-in function must be a
variable.

Explanation: You used something other than a
variable name (for example, a constant) in your
invocation of the named built-in function.

EQA1605E STRING(variable name) is invalid
because the STRING built-in function
may be used only with bit, character and
picture variables.

Explanation: You must use a variable of the correct
data type with the STRING built-in function.

EQA1606E POINTER(variable name ,...) is invalid
because the first argument to the
POINTER built-in function must be an
offset variable.

Explanation: The first argument to POINTER was
determined to be something other than an OFFSET
data type.

EQA1607E POINTER(..., variable name) is invalid
because the second argument to the
POINTER built-in function must be an
area variable.

Explanation: The second argument to POINTER was
determined to be something other than an AREA data

type.

EQA1608E OFFSET(variable name ,...) is invalid
because the first argument to the
OFFSET built-in function must be a
pointer variable.

Explanation: The first argument to OFFSET was
determined to be something other than a POINTER
data type.

EQA1609E OFFSET(..., variable name) is invalid
because the second argument to the
OFFSET built-in function must be an
area variable.

Explanation: The second argument to OFFSET was
determined to be something other than an AREA data

type.

EQA1610E built-in function name (variable name) is
invalid because the argument to the
built-in function name built-in function
must be a file reference.

Explanation: The name built-in function requires the
name of a FILE to operate. Some other data type was
used as the argument.

EQA1611E « EQA1626E

EQA1611E COUNT(variable name) must refer to an
open STREAM file.

Explanation: You must name an open STREAM file in
the COUNT built-in function.

EQA1612E LINENO(variable name) must refer to an
open PRINT file.

Explanation: You must name an open PRINT file in
the LINENO built-in function.

EQA1613E SAMEKEY(variable name) must refer to
a RECORD file.

Explanation: You must name a RECORD file in the
SAMEKEY built-in function. This requirement is tested
for all file constants, but is tested for file variables only if
the file variable is associated with an open file.

EQA1614E The argument in the built-in function name
built-in function must be a variable.

Explanation: The built-in function is expecting a
variable but a constant or some other invalid item
appeared as one of the arguments.

EQA1615E Argument to POINTER is an aggregate
when pointer is being used as a locator.

Explanation: This message applies to PL/I constants.

EQA1616E The result of invoking the GRAPHIC
built-in function must not require more
than 16383 DBCS characters.

Explanation: GRAPHIC(x,y) is illegal if y > 16383, and
GRAPHIC(x) is illegal if length(CHAR(X)) > 16383.

EQA1617W The first argument to the built-in function
name built-in function is negative, but
since WARNING is on, the evaluation will
not be performed.

Explanation: The specified built-in function would fail
if a negative argument was passed. Use of the built-in
function will be avoided.

EQA1618W The second argument to the built-in
function name built-in function is
negative, but since WARNING is on, the
evaluation will not be performed.

Explanation: The specified built-in function would fail
if a negative argument was passed. Use of the built-in
function will be avoided.

EQA1619W The third argument to the built-in function
name built-in function is negative, but
since WARNING is on, the evaluation will
not be performed.

Explanation: The specified built-in function would fail
if a negative argument was passed. Use of the built-in
function will be avoided.

EQA1620E If the CHAR built-in function is invoked
with only one argument, that argument
must not have the GRAPHIC attribute
with length 16383.

Explanation: CHAR(x) is illegal if x is GRAPHIC with
length 16383 since the resultant string would require
32768 characters.

EQA1621E built-in function (variable name) is not
defined since variable name is not
connected.

Explanation: This applies to the PL/I
CURRENTSTORAGE and STORAGE built-in functions.

EQA1622E built-in function (variable name) is not
defined since variable name is an
unaligned fixed-length bit string.

Explanation: This applies to the PL/I
CURRENTSTORAGE and STORAGE built-in functions.

EQA1623E built-in function (x) is undefined if ABS(x)
> 1.

Explanation: This applies to the PL/I ASIN and ACOS
built-in functions.

EQA1624E ATANH(z) is undefined if z is COMPLEX
andz=+1orz=-1.

Explanation: This applies to the PL/I ATANH built-in
function.

EQA1625E ATAN(z) is undefined if z is COMPLEX
and z = +1i or z = -1i.

Explanation: This applies to the PL/I ATAN built-in
function.

EQA1626E Built-in function not defined since the
argument is real and less than or equal
to zero

Explanation: This message applies to PL/I constants.

Appendix F. Debug Tool Messages 375

EQA1627E « EQA1639E

EQA1627E SQRT(x) is undefined if x is REAL and x
<0.

Explanation: This applies to the PL/I SQRT built-in
function.

EQA1628E built-in function (x,y) is undefined if x or y
is COMPLEX.

Explanation: This applies to the PL/I ATAN and
ATAND built-in functions.

EQA1631E The subject of the SUBSTR
pseudovariable (character string) is not a
string.

Explanation: You are trying to get a substring from
something other than a string.

EQA1632E Argument to pseudovariable must be
complex numeric

Explanation: This message applies to PL/I constants.

EQA1629E Built-in function(X,Y) is undefined if X=0
and Y=0

Explanation: This applies to PL/I constants.

EQA1630E The argument in built-in function is too
large.

Explanation: This applies to the PL/I trigonometric
built-in functions.

For short floating-point arguments, the limits are:
COS and SIN ABS(X) <= (2**18)*pi

TAN ABS(X) <= (2**18)*pi if x is real
and ABS(REAL(X)) <=
(2**17)*pi if x is complex

TANH ABS(IMAG(X)) <= (2**17)*pi if
X is complex

COSH, EXP and SINH ABS(IMAG(X)) <= (2**18)*pi if
X is complex

COSD, SIND and TAND ABS(X) <= (2**18)*180
For long floating-point arguments, the limits are:
COS and SIN ABS(X) <= (2**50)*pi

TAN ABS(X) <= (2**50)*pi if x is real
and ABS(REAL(X)) <=
(2**49)*pi if x is complex

TANH ABS(IMAG(X)) <= (2**49)*pi if
X is complex

COSH, EXP and SINH ABS(IMAG(X)) <= (2**50)*pi if
X is complex

COSD, SIND and TAND ABS(X) <= (2**50)*180
For extended floating-point arguments, the limits are:
COS and SIN ABS(X) <= (2**106)*pi

TAN ABS(X) <= (2*106)*pi if x is
real and ABS(REAL(X)) <=
(2**105)pi if x is complex

TANH ABS(IMAG(X)) <= (2**105)*pi if
X is complex

COSH, EXP and SINH ABS(IMAG(X)) <= (2**106)*pi if
X is complex

COSD, SIND and TAND ABS(X) <= (2**106)*180

376 Debug Tool/VSE V1R1 User's Guide and Reference

EQA1633E The first argument to a pseudovariable
must refer to a variable, not an
expression or a pseudovariable.

Explanation: The arguments that accompany a
pseudovariable are incorrect.

EQA1634E The length of the bit string that would be
returned by UNSPEC is greater than the
maximum for a bit variable. Processing
of the expression will stop.

Explanation: This will occur in UNSPEC(A) where A is
CHARACTER(n) and n > 4095, where A is
CHARACTER(n) VARYING and n > 4093, where A is
AREA(n) and n > 4080, etc.

EQA1635E Maximum number of arguments to
PLIDUMP subroutine is two

Explanation: This message applies to PL/I constants.

EQA1636E Invalid argument in CALL %DUMP

Explanation: This message applies to PL/I constants.

EQA1637E PL/I cannot process the expression
expression name.

Explanation: This applies to PL/I constants.

EQA1638E Argument argument number to the
MPSTR built-in function must not have
the GRAPHIC attribute.

Explanation: GRAPHIC (DBCS) strings are prohibited
as arguments to the MPSTR built-in function.

EQA1639E ALLOCATION(variable name) is invalid
because the ALLOCATION built-in
function can be used only with
controlled variables.

Explanation: You must name a variable that is
ALLOCATEable.

Programmer Response: The variable by that name
cannot be a controlled variable within the current
context. If the variable exists somewhere else (and is a

controlled variable), you should use qualification with
the variable name.

EQA1640E « EQA1653E

condition chapter for the values of the revised SUBSTR
reference.

EQA1640E variable name is an aggregate and hence
is invalid as an argument to the
POINTER built-in function when that
built-in function is used as a locator.

Explanation: The argument to the POINTER built-in
function is invalid. The argument to the POINTER
built-in function should be an OFFSET data type for the
first argument, or an AREA data type for the second
argument.

EQA1641E Structures are not supported within this
context.

Explanation: Given DCL 1 A, 2 B FIXED, 2 C FLOAT,
the name A refers to a structure.

Programmer Response: Break the command into
commands for each of the basic elements of the
structure, or use the DECLARE command with a
BASED variable to define a variable overlaying the
structure.

EQA1642E The first argument to the built-in function
name built-in function must have
POINTER type.

Explanation: This applies to the POINTERADD built-in
function. The first argument must have pointer type,
and it must be possible to convert the other to FIXED
BIN(31,0).

EQA1643E The argument in the built-in function name
built-in function must have data type:
data type.

Explanation: This message applies to various built-in
functions. By built-in function, the datatypes required
are:

ENTRYADDR ENTRY
BINARYVALUE POINTER
BINVALUE POINTER

EQA1644W STRINGRANGE is disabled and the
SUBSTR arguments are such that
STRINGRANGE ought to be raised.
Debug Tool will revise the SUBSTR
reference as if STRINGRANGE were
enabled.

Explanation: See the Language Reference Manual
(LRM) built-in function chapter for the description of
when STRINGRANGE is raised. See the LRM

EQA1645E The subject of the pseudovariable name
pseudovariable must have data type:
data type.

Explanation: This message applies to various
pseudovariables. By pseudovariable, the datatypes
required are:

ENTRYADDR ENTRY VARIABLE

EQA1646E built-in function (z) is undefined if z is
COMPLEX.

Explanation: This applies to the PL/I ACOS, ASIN,
ATAND, COSD, ERF, ERFC, LOG2, LOG10, SIND and
TAND built-in functions.

Explanation: This applies to PL/I constants.

EQA1649E Error: see Command Log.

Explanation: An error has occurred during expression
evaluation. See the Debug Tool Command Log for
more detailed information.

EQA1650E The range of statements statement id -
statement_id is invalid because the two
statements belong to different blocks.

Explanation: AT stmt1-stmt2 is valid only if stmt1 and
stmt2 are in the same block.

EQA1651W The breakpoint-id breakpoint has not
been established.

Explanation: You just issued a CLEAR/LIST
command against a breakpoint that does not exist.

Programmer Response: Verify that you referred to
the breakpoint using the same syntax that was used to
establish it. Perhaps a CLEAR command occurred
since the command that established the breakpoint.

EQA1652E Since the program for the statement
statement-number does not have hooks at
statements, AT commands are rejected
for all statements in the program.

Explanation: A compile unit must have been compiled
with TEST(STMT) or TEST(ALL) for hooks to be
present at statements.

EQA1653E A file name is invalid in this context.

Explanation: A command (for example, AT ENTRY)
specified a C file name where a function or compound
statement was expected.

Appendix F. Debug Tool Messages 377

EQA1654E « EQA1669W

EQA1654E Since the cu cu_name does not have
hooks at block entries and exits, all AT
ENTRY and AT EXIT commands will be
rejected for the cu.

Explanation: A compile unit must have been compiled
with TEST(BLOCK), TEST(PATH) or TEST(ALL) for
hooks to be present at block exits and block entries.

EQA1655E Since the program for the label
label-name does not have hooks at
labels, AT commands are rejected for all
labels in the program.

Explanation: A compilation unit must have been
compiled with TEST(PATH) or TEST(ALL) for hooks to
be present at labels.

EQA1656E statement_id contains a value that is
invalid in this context.

Explanation: %STATEMENT and %LINE are invalid in
AT commands at block entry and block exit, and in AT
and LIST STATEMENT commands at locations that are
outside of the program.

EQA1657W There are no breakpoint-class
breakpoints set.

Explanation: The command CLEAR/LIST AT was
entered but there are no AT breakpoints presently set,
or the command CLEAR/LIST AT class was entered but
there are no AT breakpoints presently set in that class.

EQA1658W There are no enabled breakpoint-class
breakpoints set.

Explanation: The command CLEAR/LIST AT was
entered but there are no enabled AT breakpoints
presently set in the requested class of breakpoints.

EQA1659W There are no disabled breakpoint-class
breakpoints set.

Explanation: The command CLEAR/LIST AT was
entered but there are no disabled AT breakpoints
presently set in the requested class of breakpoints.

EQA1660W The breakpoint-id breakpoint is not
enabled.

Explanation: You issued a specific LIST AT
ENABLED command against a breakpoint that is not
enabled.

378 Debug Tool/VSE VIR1 User's Guide and Reference

EQA1661W The breakpoint-id breakpoint is not
disabled.

Explanation: You issued a specific LIST AT
DISABLED command against a breakpoint that is not
disabled.

EQA1662W The breakpoint-id breakpoint cannot be
triggered because it is disabled.

Explanation: You cannot TRIGGER a disabled
breakpoint.

EQA1663W There are no breakpoints set.

Explanation: No breakpoints are currently set.

EQA1664W There are no disabled breakpoints set.

Explanation: No disabled breakpoints are currently
set.

EQA1665W There are no enabled breakpoints set.

Explanation: No enabled breakpoints are currently
set.

EQA1666W The breakpoint-id breakpoint is already
enabled.

Explanation: You cannot ENABLE an enabled
breakpoint.

EQA1667W The breakpoint-id breakpoint is already
disabled.

Explanation: You cannot DISABLE a disabled
breakpoint.

EQA1668W The attempt to set this breakpoint has
failed.

Explanation: For some reason, when Debug Tool
tried to set this breakpoint, an error occurred. This
breakpoint cannot be set.

EQA1669W The FROM or EVERY value in a
breakpoint command must not be
greater than the specified TO value.

Explanation: In an every_clause specified with a
breakpoint command, if the TO value was specified, the
FROM or EVERY value must be less than or equal to
the TO value.

EQA1670W « EQA1681E

EQA1670W GO/RUN BYPASS is ignored. It is valid
only when entered for an AT CALL, AT
GLOBAL CALL, or AT OCCURRENCE.

Explanation: GO/RUN BYPASS is valid only when
Debug Tool is entered for an AT CALL, AT GLOBAL
CALL, or AT OCCURRENCE breakpoint.

EQA1671W AT OCCURRENCE breakpoint or
TRIGGER of condition condition-name
cannot have a reference specified. This
command not processed.

Explanation: The following AT OCCURRENCE
conditions must have a qualifying reference:
CONDITION, ENDFILE, KEY, NAME, PENDING,
RECORD, TRANSMIT and UNDEFINEDFILE. This
would also apply to the corresponding TRIGGER
commands.

EQA1672W AT OCCURRENCE breakpoint or
TRIGGER of condition condition-name
must have a valid reference specified.
This command not processed.

Explanation: The following AT OCCURRENCE
conditions must have a valid qualifying reference:
CONDITION, ENDFILE, KEY, NAME, PENDING,
RECORD, TRANSMIT and UNDEFINEDFILE. This
would also apply to the corresponding TRIGGER
commands.

EQA1673W An attempt to automatically restore an
AT breakpoint type breakpoint failed.

Explanation: Debug Tool was attempting to restore a
breakpoint that had been set in the previous process
and has failed in that attempt. There are two reasons
this could have happened. If the Compile Unit (CU) has
been changed (that is, modified and recompiled/linked)
between one process and the next and a breakpoint
had been established for a statement or variable that no
longer exists due to the change, when Debug Tool
attempts to reestablish that breakpoint, it will fail with
this message.

EQA1674W An attempt to automatically disable an
AT breakpoint type breakpoint failed.

Explanation: Debug Tool was attempting to disable a
breakpoint for a CU that has been deleted from storage
(or deactivated), and failed in that attempt.

EQA1675E variable name is not a LABEL variable or
constant. No GOTO commands can be
issued against it.

Explanation: You are trying to GOTO a variable name
that cannot be associated with a label in the program.

EQA1676S /abel name is a label variable that is
uninitialized or that has been zeroed out.
It cannot be displayed and should not be
used except as the target of an
assignment.

Explanation: You are trying to make use of a LABEL
variable, but the control block representing that variable
contains improper information (for example, an address
that is zero).

EQA1677S file name is a file variable that is
uninitialized or that has been zeroed out.
It cannot be displayed and should not be
used except as the target of an
assignment.

Explanation: You are trying to make use of a FILE
variable, but the control block representing that variable
contains improper information (for example, an address
that is zero).

EQA1678E The program CU-name has a short
statement number table, and therefore
no statement numbers in the program
can be located.

Explanation: A command requires determining which
statement was associated with a particular storage
address. A statement table could not be located to
relate storage to statement identifications.

Programmer Response: Check to see if the program
had been compiled using release name. If so, was the
statement table suppressed?

EQA1679E variable name is not a controlled variable.
An ALLOCATE breakpoint cannot be
established for it.

Explanation: You cannot establish an AT ALLOCATE
breakpoint for a variable that cannot be allocated.

EQA1680E variable name is a controlled parameter.
An ALLOCATE breakpoint can be
established for it only when the block in
which it is declared is active.

Explanation: Debug Tool cannot, at this time,
correlate a block to the named variable. As a result, a
breakpoint cannot be established.

Programmer Response: Establish the breakpoint via
an AT ENTRY ... AT ALLOCATE ...

EQA1681E variable name is not a FILE variable or
constant.

Explanation: ON/SIGNAL file-condition (variable) is
invalid because the variable is not a PL/I FILE variable.

Appendix F. Debug Tool Messages 379

EQA1682E « EQA1726E

EQA1682E variable name is not a CONDITION
variable.

Explanation: ON/SIGNAL CONDITION (variable) is
invalid because the variable is not a PL/I CONDITION
variable.

EQA1700E The session procedure, procedure name,
is either undefined or is hidden within a
larger, containing procedure.

Explanation: This is issued in response to a CALL,
CLEAR, or QUERY command when the target session
procedure cannot be located. It cannot be located for
one of two reasons: it was not defined, or it is imbedded
with another session procedure.

EQA1701E The maximum number of arguments to
the %DUMP built-in subroutine is 2, but
number were specified.

Explanation: %DUMP does not accept more than two
parameters.

EQA1702E Invalid argument in CALL %DUMP.

Explanation: In PL/I, the %DUMP arguments must be
scalar data that can be converted to character. In C,
the %DUMP arguments must be pointers to character
or arrays of character.

EQA1703E No arguments can be passed to a
session procedure.

Explanation: Parameters are not supported with the
CALL procedure command.

EQA1704E Invalid or incompatible dump options or
suboptions

Explanation: This message is from the feedback code
of LE/VSE CEE5DMP call.

EQA1705E Dump argument exceeds the maximum
length allowed.

Explanation: The dump option allows a maximum of
255 characters. The dump title allows a maximum of 80
characters.

EQA1706E pgmname must be loaded before calling
the program.

Explanation: The CALL command was terminated
unsuccessfully.

380 Debug Tool/VSE V1R1 User's Guide and Reference

EQA1720E There is no declaration for variable name.

Explanation: A command (for example, CLEAR
VARIABLES) requires the use of a variable, but the
specified variable was not declared (or was previously
cleared).

Programmer Response: For a list of session
variables that can be referenced in the current
programming language, use the LIST NAMES TEST
command.

EQA1721E The size of the variable is too large.

Explanation: A variable can require no more than
2**24 - 1 bytes in a non-XA machine and no more than
2**31 - 1 bytes in an XA machine.

EQA1722E Error in declaration; invalid attribute
variable name.

Explanation: A session variable is declared with
invalid or unsupported attribute.

EQA1723E There are no session variables defined.

Explanation: The CLEAR VARIABLES command is
entered but there is no declaration for session variables.

EQA1724E There is no {ag type tag named tag name.

Explanation: This message applies to C. It is issued,
for example, after DESCRIBE ATTRIBUTES enum x if x
is not an enum tag.

EQA1725E tag type tag name is already defined.
Explanation: This message applies to C.

A tagged enum, struct, or union type cannot be
redefined, unless all variables and type definitions
referring to that type and then the type itself are first
cleared. For example, given

enum colors {red,yellow,blue} primary, * ptrPrimary;

enum colors cannot be redefined unless primary,
ptrPrimary, and then enum colors are first cleared.

EQA1726E tag type tag name cannot be cleared
while one or more declarations refer to
that type.

Explanation: This message applies to C.

A CLEAR DECLARE of a tagged enum, struct, or union
type is invalid while one or more declarations refer to
that type. For example, given

enum colors {red,yellow,blue} primary, * ptrPrimary;

CLEAR DECLARE enum colors is invalid until CLEAR
DECLARE (primary, ptrPrimary) is issued.

EQA1727E « EQA1771S

EQA1727E enum member name is the name of a
declared variable. It cannot be used as
the name of a member of an enum type.

Explanation: This message applies to C.

For example, given

int blue;

The use of the name blue in the following declaration is
invalid:

enum teamColors {blue,gold};

EQA1728E The tag type tag name is recursive: it
contains itself as a member.

Explanation: This message applies to C.

A struct or union type must not contain itself as a
member. For example, the following declaration is
invalid:

struct record {

int member;

struct record next;

}

EQA1729E An error occurred during declaration
processing.

Explanation: Unable to process the declaration. The
command is terminated unsuccessfully.

EQA1750E An error occurred during expression
evaluation.

Explanation: Unable to evaluate the expression. The
command is terminated unsuccessfully.

EQA1751E Program pgmname not found.

Explanation: A bad program name is specified in a
CALL command and processing is terminated
unsuccessfully.

EQA1752S Comparison in command-name command
was invalid. The command was ignored.

Explanation: This message applies to COBOL.

The operands to be compared are of incompatible
types.

EQA1753S The nesting of "switch" command
exceeded the maximum.

Explanation: This message applies to C.

There are too many nested levels of switch commands.

EQA1754S An error occurred in "switch" command
processing. The command is terminated.

Explanation: This message applies to C.

The switch command is terminated because an error
occurred during processing.

EQA1755S Comparison with the keyword-name
keyword in command-name command
was invalid. The command was ignored.

Explanation: This message applies to COBOL.

The operands to be compared are incompatible. For
example, the following comparison is invalid:

EVALUATE TRUE

When 6 List ('invalid');
when other List ('other');
END-EVALUATE

EQA1766E The target of the GOTO command is in
an inactive block.

Explanation: You are trying to GOTO a block that is
not active. If it is inactive it doesn't have a register save
area, base registers, and so on—all of the mechanics
established that would allow the procedure to run.

EQA1767S No offset was found for label "/abel".

Explanation: No offset associated with the label was
found; the code associated with the label might have
been removed by optimization.

EQA1768S The label "/abel" is not known.

Explanation: The label is not known.

EQA1769S The label "/abel" is ambiguous—multiple
labels of this name exist.

Explanation: The label is ambiguous—multiple labels
of this name exist.

EQA1770S The GOTO is not permitted, perhaps
because of optimization.

Explanation: The GOTO command is not
recommended. For COBOL, this might be due to
optimization, or because register contents other than
the code base cannot be guaranteed for the target.

EQA1771S The GOTO is not permitted due to
language rules.

Explanation: The GOTO command is not
recommended. For COBOL, this might be due to
optimization, or because register contents other than
the code base cannot be guaranteed for the target.

Appendix F. Debug Tool Messages 381

EQA1772S « EQA1810E

EQA1772S The GOTO was not successful.

Explanation: There are various reasons why a GOTO
command can be unsuccessful; this message covers all
the other situations not covered by the other message
in the GOTO LABEL messages group.

EQA1773E GOTO is invalid when the target
statement number is in a C function.

Explanation: The target statement number in a GOTO
command must belong to an active procedure.

EQA1792S Only the ADDR and POINTER built-in
functions may be used to specify an
address in the LIST STORAGE
command.

Explanation: LIST STORAGE(built-in function(...)) is
invalid if the built-in function is not the ADDR or
POINTER built-in function.

EQA1786W There are no entries in the HISTORY
table.

Explanation: Debug Tool has not yet encountered any
of the situations that cause entries to be put into the
HISTORY table; so it is empty.

EQA1787W There are no STATEMENT entries in the
HISTORY table.

Explanation: LIST STATEMENTS or LIST LAST n
STATEMENTS was entered, but there are no
STATEMENT entries in the HISTORY table. Debug
Tool was not invoked for any STATEMENT hooks.

EQA1788W There are no PATH entries in the
HISTORY table.

Explanation: LIST PATH or LIST LAST n PATH was
entered, but there are no PATH entries in the HISTORY
table. Debug Tool was not invoked for any PATH
hooks.

EQA1793S ENTRY, FILE, LABEL, AREA, EVENT or
TASK variables are not valid in a LIST
command.

Explanation: The contents of these program control
variables can be displayed by using the HEX or
UNSPEC built-in functions or by using the LIST
STORAGE command.

EQA1806E The command element character is
invalid.

Explanation: The command entered could not be
parsed because the specified element is invalid.

EQA1807E The command element character is
ambiguous.

Explanation: The command entered could not be
parsed because the specified element is ambiguous.

EQA1808E The hyphen cannot appear as the last
character in an identifier.

Explanation: COBOL identifiers cannot end in a
hyphen.

EQA1789W Requested register(s) not available.

Explanation: You are trying to work with a register but
none exist in this context (for example, during
environment initialization).

EQA1790W There are no active blocks.

Explanation: The LIST CALLS command was issued
prior to any STEP or GO.

EQA1791E The pattern pattern is invalid.

Explanation: A pattern is invalid if it is longer than 128
bytes or has more than 16 parts. (Each asterisk and
each name fragment forms a part.)

382 Debug Tool/VSE VIR1 User's Guide and Reference

EQA1809E Incomplete command specified.

Explanation: The command, as it was entered,
requires additional command elements (for example,
keywords, variable names).

Programmer Response: Refer to the definition of the
command and verify that all required elements of the
command are present.

EQA1810E End-of-source has been encountered
after an unmatched comment marker.

Explanation: A /* ... was entered but an */ was not
present to close the comment. The command is
discarded.

Programmer Response: You must either add an */ to
the end of the comment or explicitly indicate
continuation with an SBCS hyphen.

EQA1811E « EQA1825E

EQA1811E End-of-source has been encountered
after an unmatched quotation mark.

Explanation: The start of a constant was entered (a
quotation mark started the constant) but another
quotation mark was not found to terminate the constant
before the end of the command was reached.

Programmer Response: There could be several
solutions for this, among them:

1. You must either add a quotation mark to the end of
the constant or explicitly indicate continuation (with
an SBCS hyphen).

2. If DBCS is ON you should also verify that you didn't
try to start a constant with an SBCS quotation mark
and terminate it with a DBCS quotation mark (or
vice versa).

3. You might have entered a character constant that
contained a quotation mark -- and you didn't double
it.

EQA1812E A decimal exponent is required.

Explanation: In COBOL, an E in a float constant must
be followed by at least one decimal digit (optionally
preceded by a sign). In C, if a + or - sign is specified
after an E in a float constant, it must followed by at
least one decimal digit.

EQA1813E Error reading DBCS character codes.

Explanation: An unmatched or nested shift code was
found.

EQA1814E Identifier is too long.

Explanation: All identifiers must be contained in 255
bytes or less. COBOL identifiers must be contained in
30 bytes or less.

EQA1815E Invalid character code within DBCS
name, literal or DBCS portion of mixed
literal.

Explanation: A character code point was encountered
that was not within the defined code values for the first
or second byte of a DBCS character.

EQA1816E An error was found at line line-number in
the current input file.

Explanation: An error was detected while parsing a
command within a USE file, or within a file specified on
the run-time TEST option. It occurred at the record
number that was displayed.

EQA1817E Invalid hexadecimal integer constant
specified.

Explanation: A hexadecimal digit must follow 0x.

EQA1818E Invalid octal integer constant specified.

Explanation: Only an octal digit can follow a digit-0.

EQA1819E A COBOL DBCS name must contain at
least one nonalphanumeric double byte
character.

Explanation: All COBOL DBCS names must have at
least one double byte character not defined as double
byte alphanumeric. For EBCDIC, these are characters
with X'42' in the leading byte, with the trailing byte in
the range X'41' to X'FE"'.

EQA1820E Invalid double byte alphanumeric
character found in a COBOL DBCS
name. Valid COBOL double byte
alphanumeric characters are: A-Z, a-z,
0-9.

Explanation: Alphanumeric double-byte characters
have a leading byte of X'42"' in EBCDIC and X'82" in
ASCII. The trailing byte is an alphanumeric character.
The valid COBOL subset of these is A-Z, a-z, 0-9.

EQA1821E The DBCS representation of the hyphen
was the first or last character in a DBCS
name.

Explanation: COBOL DBCS names cannot have a
leading or trailing DBCS hyphen.

EQA1822E A DBCS Name, DBCS literal or mixed
SBCS/DBCS literal may not be
continued.

Explanation: Continuation rules do not apply to DBCS
names, DBCS literals or mixed SBCS/DBCS literals.
These items must appear on a single line.

EQA1823E An end of line was encountered before
the end of a DBCS name or DBCS literal.

Explanation: An end of line was encountered before
finding a closing shift-in control code.

EQA1824E A DBCS literal or DBCS name contains
no DBCS characters.

Explanation: A shift-out shift-in pair of control
characters were found with no intervening DBCS
characters.

EQA1825E End-of-source was encountered while
processing a DBCS name or DBCS
literal.

Explanation: No closing Shift-In control code was
found before end of file.

Appendix F. Debug Tool Messages 383

EQA1826E « EQA1879E

EQA1826E A DBCS literal was not delimited by a
trailing quote or apostrophe.

Explanation: No closing quotation mark

EQA1827E Invalid separator character found
following a DBCS name.

EQA1828E Fixed binary constants are limited to 31
digits.

Explanation: A fixed binary constant must be between

-2**31 and 2**31 exclusive.

EQA1837E Float constants must be bigger than
5.3976053469340278908664699142502496E-79
and less than
7.2370055773322622139731865630429929E +75.

Explanation: This is the range of values allowed by C.

EQA1872E An error occurred while opening file: file
name.

Explanation: An error occurred during the initial
processing (OPEN) of the file.

EQA1829E Fixed decimal constants are limited to 15
digits.

Explanation: A fixed decimal constant must be
between -10**15 and 10**15 exclusive.

EQA1873E An error occurred during an input or
output operation.

Explanation: An error occurred performing an input or
output operation.

EQA1830E Float binary constants are limited to 109
digits.

Explanation: This limit applies to all PL/I FLOAT
BINARY constants.

EQA1831E Float decimal constants are limited to 33
digits.

Explanation: This limit applies to all PL/I FLOAT
DECIMAL constants.

EQA1832E Floating-point exponents are limited to 3
digits.

Explanation: This limit applies to all C float constants
and to all PL/I FLOAT BINARY constants.

EQA18741 The command command name can be
used only in full screen mode.

Explanation: This command is one of a collection that
is allowed only when your terminal is operating in full
screen mode. The function is not supported in batch
mode.

EQA1875I Insufficient storage available.

Explanation: This message is issued when not
enough storage is available to process the last
command issued or to handle the last invocation.

EQA1876E Not enough storage to display results.

Explanation: Increase size of virtual storage.

EQA1833E Float decimal exponents are limited to 2
digits.

Explanation: This limit applies to all PL/I FLOAT
DECIMAL constants.

EQA1877E An error occurred in writing messages to
the dump file.

Explanation: This could be caused by a bad file name
specified with the call dump FNAME option.

EQA1834E Float binary constants must be less than
1E+252B.

Explanation: This limit applies to all PL/I FLOAT
BINARY constants.

EQA1835E Float decimal constants must be less
than

7.23700557733226221397318656304298E+75.

Explanation: This limit applies to all PL/I FLOAT
DECIMAL constants.

EQA1836E Float constants are limited to 35 digits.

Explanation: This limit applies to all C float constants.

384 Debug Tool/VSE V1R1 User's Guide and Reference

EQA1878E The cursor is not positioned at a variable
name.

Explanation: A command, such as LIST, LIST
TITLED, LIST STORAGE, or DESCRIBE ATTRIBUTES,
which takes input from the Source window was entered
with the cursor in the Source window, but the cursor
was not positioned at a variable name.

Programmer Response: Reposition the cursor and
reenter.

EQA1879E The listing file name given is too long.

Explanation: Filenames are limited to 7 characters

and file-ids are limited to 44 characters. If a sublibrary
member is referenced the name and type can each be
a maximum of 8 characters (enclosed in parentheses).

EQA1880E « EQA1920E

EQA1880E You may not resume execution when the
program is waiting for input.

Explanation: The user attempted to issue a GO/RUN
or STEP request when the program was waiting for
input. The input must be entered to resume execution.

EQA1881E The INPUT command is only valid when
the program is waiting for input.

Explanation: The user attempted to enter the INPUT
command when the program was not waiting for any
input.

EQA1905W You cannot trigger a condition in your
program at this time.

Explanation: The environment is in a position that it
would not be meaningful to trigger a condition. For
example, you have control during environment
initialization.

EQA1906S The condition named CONDITION name
is unknown.

Explanation: A condition name was expected, but the
name entered is not the name of a known condition.

EQA1882E The logical record length for filename is
out of bounds. It will be set to the
default.

Explanation: The logical record length is less than 32
bytes or greater than 256 bytes.

EQA1907W The attempt to trigger this condition has
failed.

Explanation: For some reason, when Debug Tool
tried to trigger the specified condition, it failed and the
condition was not signaled.

EQA1883E Error closing previous log file; Return
code = rc

Explanation: The user attempted to open a new log
file and the old one could not be closed; the new log file
is used, however.

EQA1884E An error occurred when processing the
source listing. Check return code return
code in the Using the Debug Tool manual
for more detail.

Explanation: An error occurred during processing of
the list lines command. Possible return codes:

2 - The listing file could not be found or allocated.

5 - The CU was not compiled with the correct
compile option.

7 - Failed due to inadequate resources.

EQA1902W The command has been terminated
because of the attention request.

Explanation: The previously-executing command was
terminated because of an attention request. Normal
debugging can continue.

EQA1904E The STEP and GO/RUN commands are
not allowed at termination.

Explanation: The STEP and GO/RUN commands are
not allowed after the application program ends.

EQA1918S The block name block-qualification :>
block_name is ambiguous.

Explanation: There is another block that has the
same name as this block.

Programmer Response: Provide further block name
qualification—by phase name, by compile unit name, or
by additional block names if a nested block.

EQA1919E The present block is not nested. You
cannot QUALIFY UP.

Explanation: While you can QUALIFY to any block,
you cannot QUALIFY UP (for example, change the
qualification to the block's parent) unless there really is
a parent of that block. In this case, there is no parent
of the currently-qualified block.

Programmer Response: You have either
misinterpreted your current execution environment or
you have to qualify to some block explicitly.

EQA1920E The present block has no dynamic
parent. You cannot QUALIFY RETURN.

Explanation: While you can QUALIFY to any block
you cannot QUALIFY RETURN (for example, change
the qualification to the block's invoker) unless there
really is an invoker of that block. In this case, there is
no invoker of the currently-qualified block.

Programmer Response: You have either
misinterpreted your current run-time environment or you
have to qualify to some block explicitly.

Appendix F. Debug Tool Messages 385

EQA1921S « EQA1941E

EQA1921S There is no block named block_name.

Explanation: The block that you named could not be
located by Debug Tool.

Programmer Response: Provide further block name
qualification—by phase name, by compile unit name, or
by additional block name(s) if a nested block.

EQA1922S There is no block named block_name
within block block-qualification.

Explanation: The qualification you are using (or the
spelling of the block names) prevented Debug Tool from
locating the target block.

Programmer Response: Verify that the named block
should be within the current qualification.

EQA1928S The block name block_name is
ambiguous.

Explanation: There is another block that has the
same name as this block.

Programmer Response: Provide further block name
qualification—by phase name, by compile unit name, or
by additional block names if a nested block.

EQA1923S There is no compilation unit named
cu_name.

Explanation: The compilation unit (program) that you
named could not be located by Debug Tool.

EQA1924S Statement statement _id is not valid.

Explanation: The statement number does not exist or
cannot be used. Note that the statement number could
exist but is unknown.

EQA1925S There is no phase named phase name.

Explanation: Phase name qualification is referring to a
phase that cannot be located.

Programmer Response: The phase might be missing
or it might have been loaded before Debug Tool was
first used. Debug Tool is aware of additional phases
ONLY if they were FETCHed after Debug Tool got
control for the first time.

EQA1926S There is no cu hamed cu_name within
phase phase name.

Explanation: The compilation unit might be misspelled
or missing.

EQA1927S There are number CUs named cu_name,
but neither belongs to the current phase.

Explanation: The compilation unit you named is not
unique.

Programmer Response: Add further qualification so
that the correct phase will be known.

386 Debug Tool/VSE V1R1 User's Guide and Reference

EQA1929S Explicit qualification is required because
the location is unknown.

Explanation: The current location is unknown; as
such, the reference or statement must be explicitly
qualified.

Programmer Response: Either explicitly set the
qualification using the SET QUALIFY command or
supply the desired qualification to the command in
question.

EQA1930S There is no compilation unit named
CU-name in the current enclave.

Explanation: The compilation unit (program) that you
named could not be located in the current enclave by
Debug Tool.

EQA1931S There is no cu nhamed CU-name within
phase phase name in the current enclave.

Explanation: The compilation unit might be misspelled
or missing, or it might be outside of the current enclave.

EQA1932S Block or CU block_name is not currently
available

Explanation: The block or CU that you named could
not be located by Debug Tool.

Programmer Response: Provide further block name
qualification--by phase name, by compile unit name, or
by additional block names(s) if a nested block.

EQA1940E variable name is a not a level-one
identifier.

Explanation: You are trying to clear an element of a
structure. You must clear the entire structure by
naming its level-one identifier.

EQA1941E ATANH(x) is undefined if x is REAL and
ABS(x) >= 1.

Explanation: This applies to the PL/I ATANH built-in
function.

EQA1942E « EQA1966E

EQA1942E LOG(z) is undefined if z is COMPLEX
and z=0.

Explanation: This applies to the PL/I LOG built-in
function.

EQA1943E built-in function (x) is undefined if x is
REAL and x <= 0.

Explanation: This applies to the PL/I LOG, LOG2 and
LOG10 built-in functions.

EQA1944E built-in function (x,y) is undefined if x=0
and y=0.

Explanation: This applies to the PL/I ATAN and
ATAND built-in functions.

EQA1950E The MONITOR table is empty. If the first
MONITOR command entered is
numbered, it must have number 1.

Explanation: A MONITOR n command was issued
when the MONITOR table is empty, but n is greater
than 1.

EQA1951E The number of entries in the MONITOR
table is monitor-number. New MONITOR
commands must be unnumbered or have
a number less than or equal to
monitor-number.

Explanation: A MONITOR n command was issued but
n is greater than 1 plus the highest numbered
MONITOR command.

EQA1952E The MONITOR command table is full. No
unnumbered MONITOR commands will
be accepted.

Explanation: A MONITOR command was issued but
the MONITOR table is full.

EQA1953E No command has been set for MONITOR
monitor-number.

Explanation: A LIST MONITOR n or CLEAR
MONITOR n command was issued, but n is greater
than the highest numbered MONITOR command.

EQA1954E The command for MONITOR
monitor-number has already been cleared.

Explanation: A CLEAR MONITOR n command was
issued, but MONITOR has already been cleared.

EQA1955E There are no MONITOR commands
established.

Explanation: A LIST MONITOR or CLEAR MONITOR
command was issued, but there are no MONITOR
commands established.

EQA1956E No previous FIND argument exists. FIND
operation not performed.

Explanation: A FIND command must include a string
to find when no previous FIND command has been
issued.

EQA1957E String could not be found.

Explanation: A FIND attempt failed to find the
requested string.

EQA1960S There is an error in the definition of
variable variable name. Attribute
information cannot be displayed.

Explanation: The specified variable has an error in its
definition or length and address information is not
currently available in the execution of the program.

EQA1963S The command command is not supported
on this platform.

Explanation: The given command is not supported on
the current platform.

EQA1964E Source or Listing data is not available.

Explanation: The source or listing information is not
available. Some of the possible conditions that could
cause this are: The listing file could not be found, the
CU was not compiled with the correct compile options,
inadequate resources were available.

EQA1965E Attributes of source of assignment
statement conflict with target variable
name. The assignment cannot be
performed.

Explanation: The assignment contains incompatible
data types; the assignment cannot be made.

EQA1966E The AREA condition would have been
raised during an AREA assignment, but
since WARNING is on, the assignment
will not be performed.

Explanation: The operation, if performed, would result
in the AREA condition. The condition is being avoided
by rejecting the operation.

Appendix F. Debug Tool Messages 387

EQA1967E « EQA1998S

EQA1967E The subject of the built-in function name
pseudovariable (character string) must be
complex numeric.

Explanation: You are trying to get apply the PL/I
IMAG or REAL pseudovariable to a variable that is not
complex numeric.

EQA1968W You cannot use the GOTO command at
this time.

Explanation: The program environment is such that a
GOTO cannot be performed correctly. For example,
you could be in control during environment initialization
and base registers (supporting the GOTO'd logic) have
not been established yet.

EQA1969E GOTO /abel-constant will not be permitted
because that constant is the label for a
FORMAT statement.

Explanation: There are several statement types that
are not allowable as the target of a GOTO. FORMAT
statements are one of them.

EQA1970E The 3-letter national language code
national language is not supported for
this installation of Debug Tool.
Uppercase United States English (UEN)
will be used instead.

Explanation: The national-language-specified conflicts
with the supported national languages for this
installation of Debug Tool.

Programmer Response: Verify that the Language
Environment run-time NATLANG option is correct.

EQA1971E The return code in the QUIT command

must be nonnegative and less than 1000.

Explanation: For PL/I, the value of the return code
must be nonnegative and less than 1000.

EQA1972E variable name is not a LABEL constant No
AT commands can be issued against it

Explanation: LABEL variables may not be the object
of the AT command.

EQA1973E The FIND argument cannot exceed a
string length of 64

Explanation: Shorten the search argument to a string
length 64 or less.

388 Debug Tool/VSE V1R1 User's Guide and Reference

EQA1974E The FIND argument is invalid, the string
length is zero

Explanation: Supply a search argument inside the
quotes.

EQA1975E error message string

Explanation: Unable to evaluate the expression. See
output string provided.

EQA1987E Debugger terminated, execution
continues.

Explanation: The initialization of the connection to the
specified terminal has failed. The debug tool is
terminated and the execution of the batch application
continues. Note the accompanying messages as to
possible causes.

EQA1995E The VTAM ACB could not be opened to
start the Debug Tool 3270 session.

Explanation: The Debug Tool APPL definitions may
not have been defined to VTAM or all APPLs defined
are currently in use. This message is written to the
LE/VSE message file.

EQA1996E The VTAM logical unit defined for the
3270 session could not be acquired.

Explanation: The VTAM 3270 logical unit specified via
the MFI parameter in the preferences file suboption of
the LE/VSE TEST run-time option may not be defined in
the VTAM network or may already be in use by another
VTAM application. This message is written to the
LE/VSE message file.

EQA1997S The Debug Tool 3270 session could not
be initialized.

Explanation: The Debug Tool encountered a problem
and was unable to initialize the 3270 session. Possible
causes of the problem are:

¢ insufficient available storage
¢ an internal logic error.

This message is written to the LE/VSE message file.

EQA1998S The Debug Tool 3270 session has failed.

Explanation: The Debug Tool encountered a problem
when sending to or receiving from the 3270 session.
Possible causes of the problem are:

¢ shut down of VTAM
¢ |oss of the terminal connection
¢ an internal logic error.

This message is written to the LE/VSE message file.

EQA2000E - EQA2014I

EQA2000E Incorrect data entered

Explanation: The data entered is incorrect. There
could be several reasons for this:

¢ Missing right parenthesis in the Command File or
Preference File name.

¢ Improperly defined Session Parameter

Programmer Response: Correct the entry where the
cursor is positioned and invoke the function again. You
can use the Help function (PF1) to find the context
sensitive help for that field.

EQA2001E DTCN internal error
Explanation: DTCN discovered an internal error.

Programmer Response: Contact IBM service.

EQAZ2002E Internal CICS error

Explanation: During processing DTCN discovered an
internal CICS error

Programmer Response: Correct the error and issue
the command again. If the error persists contact your
CICS system programmer and/or IBM service.

EQA2003E Key Not Defined.

Explanation: There is no action defined with the PF
key used by the user.

Programmer Response: For more information about
the actions defined for this panel use PF2 key for
general help.

EQA2004E Add failed - profile exists

Explanation: The add command failed because the
profile for that terminal & transaction is already stored in
the Debug Tool Profile Repository.

Programmer Response: You can use Show(PF7)
command to display the profile or modify the
Termld+Tranld and Add a new profile.

EQA2005E Replace failed - profile does not exist

Explanation: The profile for Terminal & Transaction Id
does not exist in the Debug Tool Profile Repository and
cannot be updated.

Programmer Response: Specify different
Terminal+Transaction Id to update. You can use Next
(PF8) command to browse the Profile Repository
starting from any point.

EQA2006E Delete failed - profile does not exist

Explanation: The profile for Terminal & Transaction Id
does not exist in the Debug Tool Profile Repository and
cannot be updated.

Programmer Response: Specify different
Terminal+Transaction Id to delete. You can use Next
(PF8) command to browse the Profile Repository
starting from any point.

EQA2007E Show failed - profile does not exist

Explanation: The profile for Terminal & Transaction Id
does not exist in the Debug Tool Profile Repository.

Programmer Response: Specify different
Terminal+Transaction Id to display. You can use Next
(PF8) command to browse the Profile Repository from
any point.

EQA2008E Next failed - profile does not exist

Explanation: There are no more profiles in the Debug
Tool Profile Repository.

EQA20101 DTCN closed

Explanation: DTCN deleted all profiles stored in the
Debug Tool Profiles Repository. This action affects all
users working with that CICS partition.

EQA2011E Blank Terminal Id and Transaction Id not
allowed

Explanation: DTCN cannot store debugging profile for
blank Terminal Id and Transaction Id.

Programmer Response: Supply nonblank Terminal Id
(for debugging application on that terminal) or
Transaction Id (for debugging batch CICS transaction or
troubleshooting transaction partition wide) or both.

EQA20121 Terminal Id blanked - partition wide
debugging - press Enter to Confirm

Explanation: DTCN asks for additional confirmation
for partition wide Transaction debugging.

Programmer Response: Blank Transaction Id (for
debugging batch CICS transaction or troubleshooting
transaction partition wide) requires confirmation. (Enter
key) or negation (any other).

EQA20141 Debug Tool profile added

Explanation: A new profile was added to the Debug
Tool Profile Repository

Appendix F. Debug Tool Messages 389

EQA2015] « EQA2017E

EQA20151 Debug Tool profile replaced EQA2017E CICS terminal TERM is not acquired
Explanation: Existing profile was updated in the Explanation: The terminal id specified to receive the
Debug Tool Profile Repository. Debug Tool screen was not acquired.

Programmer Response: Correct the Debug Tool
EQA20161 Debug Tool profile deleted Term Id using DTCN Replace function or logon to an
already defined terminal.

Explanation: Existing profile was deleted from the
Debug Tool Profile Repository

390 Debug Tool/VSE V1R1 User's Guide and Reference

Bibliography

Debug Tool Publications

Debug Tool for VSE/ESA
Fact Sheet, GC26-8925
User's Guide and Reference, SC26-8797
Installation and Customization Guide, SC26-8798

Language Environment
Publications

IBM Language Environment for VSE/ESA
Fact Sheet, GC33-6679
Concepts Guide, GC33-6680

Debugging Guide and Run-Time Messages,
SC33-6681

Installation and Customization Guide, SC33-6682
Licensed Program Specifications, GC33-6683
Programming Guide, SC33-6684

Programming Reference, SC33-6685

Run-Time Migration Guide, SC33-6687

Writing Interlanguage Communication Applications,
SC33-6686

C Run-Time Programming Guide, SC33-6688
C Run-Time Library Reference, SC33-6689

Programming Guide, SC26-8072
Language Reference, SC26-8073
Diagnosis Guide, SC26-8528

Reference Summary, SX26-3834

IBM PL/I for VSE/ESA
Fact Sheet, GC26-8052
Programming Guide, SC26-8053
Language Reference, SC26-8054
Licensed Program Specifications, GC26-8055
Migration Guide, SC26-8056
Installation and Customization Guide, SC26-8057
Diagnosis Guide, SC26-8058
Compile-Time Messages and Codes, SC26-8059
Reference Summary, SX26-3836

LE/VSE-Conforming Language
Product Publications

IBM C for VSE/ESA
Licensed Program Specifications, GC09-2421
Installation and Customization Guide, GC09-2422
Migration Guide, SC09-2423
User's Guide, SC09-2424
Language Reference, SC09-2425
Diagnosis Guide, GC09-2426

IBM COBOL for VSE/ESA
General Information, GC26-8068
Licensed Program Specifications, GC26-8069
Migration Guide, GC26-8070
Installation and Customization Guide, SC26-8071

© Copyright IBM Corp. 1995, 1996

Related Publications

CICS/VSE

System Definition and Operations Guide,
SC33-0706

Customization Guide, SC33-0707

Resource Definition (Macro), SC33-0709
Application Programming Guide, SC33-0712
Application Programming Reference, SC33-0713
Problem Determination Guide, SC33-0716

CcSP
Developing Applications, SH20-6435

DFSORT/VSE
Application Programming Guide, SC26-7040

DL/I DOS/VS

Application Programming: CALL and RQDLI
Interfaces, SH12-5411

Application Programming: High Level Programming
Interface, SH24-5009

DOS/VS PL/
Programmer's Guide, SC33-0008

QMF
Developing QMF Applications, SC26-4722

391

SQL/DS

Vs

Application Programming Guide for VSE,
SH09-8098

coBoL Il

Application Programming Guide for VSE,
SC26-4697

VSE/ESA Version 1 Release 4

392

Planning, SC33-6503

Administration, SC33-6505

Messages and Codes, SC33-6507

Guide to System Functions, SC33-6511

System Control Statements, SC33-6513

System Macros User's Guide, SC33-6515
System Macros Reference, SC33-6516
VSE/VSAM Commands and Macros, SC33-6532
VSE/VSAM User's Guide, SC33-6535

Release Information Guide, SC33-6536

Debug Tool/VSE V1R1 User's Guide and Reference

VSE/ESA Version 2
Planning, SC33-6603
Administration, SC33-6605
Messages and Codes, SC33-6607
Guide to System Functions, SC33-6611
System Control Statements, SC33-6613
System Macros User's Guide, SC33-6615
System Macros Reference, SC33-6616
VSE/VSAM Commands and Macros, SC33-6532
VSE/VSAM User's Guide, SC33-6535

Softcopy Publications

The following collection kit contains the LE/VSE and
LE/VSE-conforming language product publications:

VSE Collection, SK2T-0060

You can order these publications from Mechanicsburg
through your IBM representative.

Glossary

A

abend. Abnormal end of application.

active block. The currently executing block that
invokes Debug Tool or any of the blocks in the CALL
chain that leads up to this one.

addressing mode. An attribute that refers to the
address length that a routine is prepared to handle
upon entry. Addresses may be 24 or 31 bits long.

alias. An alternative name for a field used in some
high-level programming languages.

AMODE. see addressing mode.

animation. The execution of instructions one at a time
with a delay between each so that any results of an
instruction can be viewed.

application. A collection of one or more routines
cooperating to achieve particular objectives.

application program. See program

array. An aggregate that consists of data objects, each
of which may be uniquely referenced by subscripting.

array element. A data item in an array.

attention interrupt. An I/O interrupt caused by a
terminal or workstation user pressing an attention key,
or its equivalent.

attention key. A function key on terminals or
workstations that, when pressed, causes an 1/O
interrupt in the processing unit.

attribute. A characteristic or trait the user can specify.

automatic call library. Contains object modules that
are to be used as secondary input to the linkage editor
to resolve external symbols left undefined after all the

primary input has been processed.

The automatic call library may be:

e Sublibraries containing object modules, with or
without linkage editor control statements

e The sublibrary containing LE/VSE run-time routines
(PRD2.SCEEBASE or PRD2.SCEECICS)

© Copyright IBM Corp. 1995, 1996

Glossary

B

batch. Pertaining to a predefined series of actions
performed with little or no interaction between the user
and the system. Contrast with interactive.

batch job. A job submitted for batch processing. See
batch. Contrast with interactive.

batch mode. An interface mode for use with Debug
Tool which does not require input from the terminal.
See batch.

block. In programming languages, a compound
statement that coincides with the scope of at least one
of the declarations contained within it.

breakpoint. A place in a program, usually specified by
a command or a condition, where execution can be
interrupted and control given to the user or to Debug
Tool.

byte. The basic unit of storage addressability, usually
with a length of 8 bits.

C

callable services. A set of services that can be
invoked by an LE/VSE-conforming high level language
using the conventional LE/VSE-defined call interface,
and usable by all programs sharing the LE/VSE
conventions.

Use of these services helps to decrease an
application’s dependence on the specific form and
content of the services delivered by any single
operating system.

child enclave. The nested enclave created as a result
of certain commands being issued from a parent
enclave.

CICS. see Customer Information Control System.

CICS run unit. Consists of a statically and/or
dynamically bound set of one or more phases which
can be loaded by a CICS loader. A CICS run unit is
equivalent to an LE/VSE enclave.

CICS translator. A routine that accepts as input an
application containing EXEC CICS commands and
produces as output an equivalent application in which
each CICS command has been translated into the
language of the source.

393

Glossary

command list. A grouping of commands that can be
used to govern the startup of Debug Tool, the actions of
Debug Tool at breakpoints, and various other
debugging actions.

common anchor area (CAA). Dynamically acquired
storage that represents an LE/VSE thread.
Thread-related storage/resources are anchored off the
CAA. This area acts as a central communications area
for the program, holding addresses of various storage
and error-handling routines, and control blocks. The
CAA is anchored by an address in register 12.

compile. To translate a program written in a high-level
language into a machine-language program.

compile unit. A sequence of HLL statements that
make a portion of a program complete enough to
compile correctly. Each HLL product has different rules
for what comprises a compile unit.

compiler. A program that translates instructions
written in a high-level programming language into
machine language.

condition. Any synchronous event that may need to
be brought to the attention of an executing program or
the language routines supporting that program.
Conditions fall into two major categories: conditions
detected by the hardware or operating system, which
result in an interrupt; and conditions defined by the
programming language and detected by
language-specific generated code or language library
code. See also exception.

conversational. A transaction type which accepts
input from the user, performs a task, then returns to get
more input from the user.

currently-qualified. See qualification.

Customer Information Control System (CICS). CICS
is an OnLine Transaction Processing (OLTP) system
that provides specialized interfaces to databases, files
and terminals in support of business and commercial
applications.

D

data type. A characteristic that determines the kind of
value that a field can assume.

DBCS. See double-byte character set.

debug. To detect, diagnose, and eliminate errors in
programs.

Debug Tool procedure. A sequence of Debug Tool

commands delimited by a PROCEDURE and a
corresponding END command.

394 Debug Tool/VSE V1R1 User's Guide and Reference

Debug Tool variable. A predefined variable that
provides information about the user's program that the
user can use during a session. All of the Debug Tool
variables begin with %, for example, %BLOCK or %CU.

default. A value assumed for an omitted operand in a
command. Contrast with initial setting.

double-byte character set (DBCS). A set of
characters in which each character is represented by
two bytes. Languages such as Japanese, which
contain more symbols than can be represented by 256
code points, require double-byte character sets.
Because each character requires two bytes, the typing,
displaying, and printing of DBCS characters requires
hardware and programs that support these characters.

dynamic. In programming languages, pertaining to
properties that can only be established during the
execution of a program; for example, the length of a
variable-length data object is dynamic. Contrast with
static.

E

enclave. An independent collection of routines in
LE/VSE, one of which is designated as the MAIN
program. The enclave is roughly analogous to a
program or routine.

entry point. The address or label of the first
instruction executed on entering a computer program,
routine, or subroutine. A computer program may have
a number of different entry points, each perhaps
corresponding to a different function or purpose.

environment. A set of services and data available to a
program during execution. In LE/VSE, environment is
normally a reference to the run-time environment of
HLLs at the enclave level.

exception. An abnormal situation in the execution of a
program which typically results in an alteration of its
normal flow. See also condition.

execute. To cause a program, utility, or other machine
function to carry out the instructions contained within.
See also run.

execution time. See run time.

execution-time environment. See run-time
environment.

expression. A group of constants or variables
separated by operators that yields a single value. An
expression can be arithmetic, relational, logical, or a
character string.

F

file. A named set of records stored or processed as a
unit.

file-id. For a sequential disk file, a 1-to 44-character
unique name associated with a file on a given disk
volume. For a SAM ESDS file, a 1-to 44-character
unique name identical to the name of the file in the
VSAM catalog.

filename. A 1- to 7-character name used within an
application and in JCL to identify a file. The filename
provides the means for the logical file to be connected
to the physical file.

frequency count. A count of the number of times
statements in the currently qualified program unit have
been run.

full-screen mode. An interface mode for use with a
nonprogrammable terminal which displays a variety of
information about the program you are debugging.

H

hexadecimal. A base 16 numbering system.
Hexadecimal digits range from 0 through 9 (decimal 0
to nine) and uppercase or lowercase A through F
(decimal ten to fifteen).

high-level language (HLL). A programming language
above the level of assembler language and below that
of program generators and query languages. A
programming language such as C, COBOL, or PL/I.

HLL. See high-level language.

hook. An instruction inserted into a program by a
compiler at compile-time. Using a hook, you can set
breakpoints to instruct Debug Tool to gain control of the
program at selected points during its execution.

ILC. see interlanguage communication.

inactive block. A block that is not currently executing,
or is not in the CALL chain leading to the active block.
See also active block, block.

initial setting. A value in effect when the user's Debug
Tool session begins. Contrast with default.

interlanguage communication (ILC). The ability of
routines written in different programming languages to
communicate. ILC support allows the application writer
to readily build applications from component routines
written in a variety of languages.

Glossary

interrupt. A suspension of a process, such as the
execution of a computer program, caused by an event
external to that process, and performed in such a way
that the process can be resumed.

interactive. Pertaining to a program or system that
alternately accepts input and then responds. An
interactive system is conversational; that is, a
continuous dialog exists between the user and the
system. Contrast with batch.

1/0. Input/output.

J

JCL. see job control language.

job control language (JCL). A sequence of
commands used to identify a job to an operating system
and to describe a job’s requirements.

job step. One of a group of related programs
complete with the JCL statements necessary for a
particular run. Every job step is identified in the job
stream by an EXEC statement under one job statement
for the whole job.

L

Language Environment. A set of architectural
constructs and interfaces that provides a common
run-time environment and run-time services to
applications compiled by Language
Environment-conforming compilers.

Language Environment for VSE/ESA. An IBM
software product that provides a common run-time
environment and common run-time services for IBM
high-level language compilers on the VSE platform.

LE/VSE. see Language Environment for VSE/ESA.

library routine. A routine maintained in a program
library.

line wrap. The function that automatically moves the
display of a character string (separated from the rest of
a line by a blank) to a new line if it would otherwise
overrun the right margin setting.

link-edit. To create a loadable computer program
using a linkage editor.

linkage editor. A program that resolves
cross-references between separately compiled object
modules and then assigns final addresses to create a
single relocatable phase.

Glossary 395

Glossary

listing. A printout that lists the source language
statements of a program with all preprocessor
statements, includes, and macros expanded.

Log window. A Debug Tool window that records and
displays interactions with Debug Tool during a
debugging session.

main program. The first routine in an enclave to gain
control from the invoker.

megabyte (M). 1,048,576 bytes.

module. A language construct that consists of
procedures or data declarations and can interact with
other such constructs. In PL/I, an external procedure.

Monitor window. A Debug Tool window that is used
to display output generated by the Debug Tool
MONITOR command.

N

nested enclave. A new enclave created by an existing
enclave. The nested enclave that is created must be a
new main routine within the process. See also child
enclave and parent enclave.

non-LE/VSE conforming. Any HLL program that does
not adhere to LE/VSE's common interface. For
example, VS COBOL Il, DOS/VS COBOL, and DOS/VS
PL/I are all non-LE/VSE conforming HLLs.

nonconversational. A transaction type which accepts
input, performs a task, and then ends.

O

object code. Output from a compiler or assembler
which is itself executable machine code or is suitable
for processing to produce executable machine code.

object deck. See object module.

object module. A portion of an object program
suitable as input to a linkage editor. Synonym for
object deck.

online. (1) Pertaining to a user's ability to interact with
a computer. (2) Pertaining to a user's access to a

computer via a terminal.

Options. A choice that lets the user customize objects
or parts of objects in an application.

396 Debug Tool/VSE V1R1 User's Guide and Reference

P

panel. In Debug Tool, an area of the screen used to
display a specific type of information.

parameter. Data passed between programs or
procedures.

parent enclave. The enclave that issues a call to
system services or language constructs to create a
nested (child) enclave. See also child enclave and
nested enclave.

partition. A fixed-size division of storage.

path point. A point in the program where control is
about to be transferred to another location or a point in
the program where control has just been given.

phase. A program in a form suitable for loading into
main storage for execution. The application or routine
has been compiled and link-edited; that is, address
constants have been resolved.

pointer. A data element that indicates the location of
another data element.

prefix area. The eight columns to the left of the
program source or listing containing line numbers.
Statement breakpoints can be set in the prefix area.

preprocessor. A routine that examines application
source code for preprocessor statements that are then
executed, resulting in the alteration of the source.

primary entry point. See entry point.

procedure. In a programming language, a block, with
or without formal parameters, whose execution is
invoked by means of a procedure call.

process. The highest level of the LE/VSE program
management model. It is a collection of resources, both
program code and data, and consists of at least one
enclave.

profile. A group of customizable settings that govern
how the user's session appears, and how it operates
(such as the pace of statement execution in the Debug
Tool).

program. A sequence of instructions suitable for
processing by a computer. Processing can include the
use of an assembler, a compiler, an interpreter, or a
translator to prepare the program for execution, as well
as to execute it.

program unit. See compile unit.

program variable. A predefined variable that exists
when Debug Tool was invoked.

pseudo-conversational transaction. The result of a
technique in CICS called pseudo-conversational
processing in which a series of nonconversational
transactions gives the appearance (to the user) of a
single conversational transaction. See conversational
and nonconversational.

Q

qualification. A method used to specify to what
procedure or phase a particular variable name, function
name, label, or statement id belongs. The SET
QUALIFY command changes the current implicit
qualification.

R

record. A group of related data, words, or fields
treated as a unit, such as one name, address, and
telephone number.

record format. The definition of how data is structured
in the records contained in a file. The definition
includes record name, field names, and field
descriptions, such as length and data type. The record
formats used in a file are contained in the file
description.

reference. (1) In programming languages, a language
construct designating a declared language object.

(2) A subset of an expression that resolves to an area
of storage; that is, a possible target of an assignment
statement. It can be any of the following: a variable, an
array or array element, or a structure or structure
element. Any of the above can be pointer-qualified
where applicable.

return code. A code produced by a routine to indicate
its success. It may be used to influence the execution
of succeeding instructions.

RMODE. Residence mode. The attribute of a phase
that specifies whether the phase, when loaded, must
reside below the 16MB virtual storage line or may
reside anywhere in virtual storage.

run. (1) To cause a program, utility, or other machine
function to execute. (2) An action that causes a
program to begin execution and continue until a
run-time exception occurs. If a run-time exception
occurs, the user can use Debug Tool to analyze the
problem.

Run. A choice the user can make to start or resume
regular execution of a program.

Glossary

run time. Any instant at which a program is being
executed.

run-time environment. A set of resources that are
used to support the execution of a program.

run unit. A group of one or more object programs that
are run together.

S

SAM. See sequential access method.

SAM ESDS file. A SAM file managed in VSE/VSAM
space.

SBCS. See single-byte character set.

semantic error. An error in the implementation of a
program's specifications. The semantics of a program
refer to the meaning of a program. Unlike syntax
errors, semantic errors (since they are deviations from a
program's specifications) can be detected only at run
time. Contrast with syntax error.

sequence number. A number that identifies the
records within a file.

sequential access method (SAM).. A data access
method that writes to and reads from an 1/O device
record after record (or block after block).

sequential disk file.. A disk file in which records are
processed in the order in which they are entered and
stored.

session. The events that take place between the time
the user starts an application and the time the user
exits the application.

session variable. A variable the user declares during
the Debug Tool session by using Declarations.

single-byte character set (SBCS). A character set in
which each character is represented by a one-byte
code.

source. (1) The HLL statements in a file that make up
a program. (2) The input to a compiler or assembler,
written in a source language. (3) A set of instructions
written in a programming language that must be
translated to machine language before the program can
be run.

source code. See source.

source program. See source.

Glossary 397

Glossary

Source window. A Debug Tool window that contains
a display of either the source code or the listing of the
program being debugged.

statement. In programming languages, a language
construct that represents a step in a sequence of
actions or a set of declarations.

static. In programming languages, pertaining to
properties that can be established before execution of a
program; for example, the length of a fixed length
variable is static. Contrast with dynamic.

step. (1) One statement in a computer routine. (2) To
cause a computer to execute one or more statements.

storage. (1) A unit into which recorded text can be
entered, in which it can be retained, and from which it
can be retrieved. (2) The action of placing data into a
storage device. (3) A storage device.

suboption. An option that can be used with
compile-time and run-time options to further specify the
action of the option.

subroutine. A sequenced set of instructions or
statements that can be used in one or more computer
programs at one or more points in a computer program.

subsystem. A secondary or subordinate system, or
programming support, usually capable of operating
independently of or asynchronously with a controlling
system. Example: CICS.

suffix area. A variable-sized column to the right of the
program source or listing statements, containing
frequency counts for the first statement or verb on each
line. Debug Tool optionally displays the suffix area in
the Source window. See also prefix area.

syntactic analysis. An analysis of a program done by
a compiler to determine the structure of the program
and the construction of its source statements to
determine whether it is valid for a given programming
language. See also syntax error.

syntax. The rules governing the structure of a

programming language and the construction of a
statement in a programming language.

398 Debug Tool/VSE V1R1 User's Guide and Reference

syntax error. Any deviation from the grammar (rules)
of a given programming language appearing when a
compiler performs a syntactic analysis of a source
program. See also syntactic analysis.

system abend. An abend caused by the operating

system’s inability to process a routine; may be caused
by errors in the logic of the source routine.

T

temporary variable. See session variable.

token. A character string in a specific format that has
some defined significance in a programming language.

translator. See CICS translator.

trigraph. A group of three characters which, taken
together, are equivalent to a single special character.

U

user abend. A request made by user code to the
operating system to abnormally terminate a routine.
Contrast with system abend.

utility. A computer program in general support of

computer processes; for example, a diagnostic program,
a trace program, or a sort program.

\'

variable. A name used to represent a data item whose
value can be changed while the program is running.

w

window. An area of a screen with visible boundaries
within which information is displayed.

word wrap. See line wrap.

Index

A

abbreviating commands 91
abbreviating keywords 195
abnormal end of application, setting breakpoint at 131
accessing PL/I program variables 178
active block, definition of 393
%ADDRESS variable

description of 127

forC 142

for COBOL 169

for PL/l 183
alias, definition of 393
ALLOCATE, AT command (PL/I), syntax 210
allowable comparisons for Debug Tool IF

command 349

allowable moves for Debug Tool MOVE command 351
allowable moves for Debug Tool SET command 352
%AMODE variable

description of 127

for C 142

for COBOL 169

for PL/l 183
ANALYZE command (PL/l), syntax 206
animation, definition of 393
APPEARANCE, AT command, syntax 211
assigning values to variables 140, 164, 181
Assignment command (PL/l), syntax 207
AT ALLOCATE command (PL/I), syntax 210
AT APPEARANCE command, syntax 211
AT CALL command, syntax 213
AT CHANGE command, syntax 215
AT CURSOR command (Full-Screen Mode),

syntax 218

AT DELETE command, syntax 219
AT ENTRY command, syntax 220
AT EXIT command, syntax 220
AT GLOBAL command, syntax 221
AT LABEL command, syntax 222
AT LINE command

See AT STATEMENT command, syntax
AT LOAD command, syntax 224
AT OCCURRENCE command, syntax 225
AT PATH command, syntax 228
AT prefix (Full-Screen Mode), syntax 229
AT STATEMENT command, syntax 230
AT TERMINATION command, syntax 231
AT breakpoint

LIST AT command 273

removing 240
AT commands 208, 232

summary table 208

© Copyright IBM Corp. 1995, 1996

Index

attention (ATTN) interrupt
definition of 393
effect of during interactive sessions 133
how to initiate 133
in Debug Tool 133
required LE/VSE run-time options 133
attention key, definition of 393
attribute, definition of 393
attributes of variables 124
for C 246
for COBOL 246
for PL/l 246

basic tasks of Debug Tool 54
batch job, definition of 393
batch mode
See modes
batch, definition of 393
BEGIN command (PL/I), syntax 232
blanks, significance of 197
block
definition of 393
using, for C 155
block command (C), syntax 233
%BLOCK variable
description of 127
forC 142
for COBOL 169
for PL/l 183
block_name, description of 200
block_spec, description of 200
BOTTOM, SCROLL command
See SCROLL commands
break command (C), syntax 233
breakpoints
definition of 393
in unknown compile unit 212
removing 240
using within multiple enclaves 104
built-in functions 134
Debug Tool, using with C 147
Debug Tool, using with PL/I 187
for PL/l 187
%GENERATION 135
%HEX 134, 147, 188
%INSTANCES 134, 148, 188
%RECURSION 135, 148, 188
%STORAGE 134, 148, 188

399

Index

°0

attributes for variables 140, 246
declarations, syntax 247
equivalents for LE/VSE conditions 347
notes on using 195
reserved keywords 346
C commands
block 233
break 233
do/while 256
Expression 261
for 263
if 268
INPUT 271
interpretive subset of 346
SET INTERCEPT 311
SET WARNING 325
switch 328
while 335
%CAAADDRESS variable
description of 127
forC 143
for COBOL 169
for PL/l 183
CALL %DUMP command
syntax 235
CALL commands 234—240
summary table 234
CALL entry_name command (COBOL)
syntax 239
CALL procedure, syntax 240
CALL, AT command, syntax 213
calls, function, for C 146
CALLS, LIST command, syntax 275
CEETEST callable service
examples, for C 45
examples, for COBOL 47
examples, for PL/I 48
invoking Debug Tool with 43
syntax 44
CEEUOPT options module
preparing and using to invoke Debug Tool 114
CEEUOPT run-time options module 116
CHANGE, AT command, syntax 215
CHANGE, SET command, syntax 303
changing point of view
forC 158
for COBOL 176
for PL/l 191
changing source file in window 55
changing window layout in the session panel 95
character set 194
characters, searching 93

400 Debug Tool/VSE V1R1 User's Guide and Reference

CICS
debug modes under 108
DTCN utility 109
invoking Debug Tool with compile-time
directives 114
mechanisms for invoking Debug Tool under 109
preparing and using CEEUOPT to invoke Debug
Tool 114
preparing to use DTCN utility 109
requirements for using Debug Tool in 107
restrictions for debugging 114
CLEAR commands 240—244
CLEAR prefix (Full-Screen Mode), syntax 243
CLOSE, WINDOW command
See WINDOW commands
closing Debug Tool session panel windows 96
COBOL
attributes for variables 167, 246
command format 163
declarations 250
notes on using 195
reserved keywords 349
COBOL commands
CALL entry_name 239
COMPUTE 245
declarations 250
EVALUATE 260
IF 269
INPUT 271
interpretive subset of 349
MOVE 286
PERFORM 291
SET 326
SET INTERCEPT 311
coexistence of Debug Tool with other debug tools 342
coexistence with unsupported HLL modules 342
Color Selection panel 98
COLOR, SET command, syntax 304
colors
changing in session panel 97
COLORS, PANEL command
See PANEL commands
command format
Debug Tool 194
for COBOL 163
Command line, Debug Tool 89
command list, definition of 394
command sequencing, full-screen mode 90
command syntax help, getting for session 102
commands
abbreviating 91, 195
delimiting 232
entering 194
entering Debug Tool 85
entering multiple line, without continuation 197
for C, Debug Tool subset 138

commands (continued)

for COBOL, Debug Tool subset 160
for PL/I, Debug Tool subset 177
getting online help for 199
interpretive subsets, description of 129
interpretive subsets, for C 346
interpretive subsets, for COBOL 349
interpretive subsets, for PL/l 353
issuing

in a Debug Tool session 89
multiline 196
order of processing, Debug Tool 90
prefix, using in Debug Tool 90
restrictions, COBOL 161

retrieving from Log and Source windows, Debug

Tool 199

retrieving with RETRIEVE command 92
commands file

description 29

using log file as 88
COMMENT command, syntax 244
comments, inserting into command stream 198
common syntax elements 200
compile requirements

for DL/I 115

for SQL/DS 119
compile unit, definition of 394
compile units

general description 130

name area, Debug Tool 89

qualification of, for C 156

qualification of, for COBOL 174

qualification of, for PL/I 189

record of associations, Debug Tool 289
compile-time option, TEST

forC 12

for COBOL 16

for PL/I 19

using #pragma statement to specify 16

using for DL/ 115

using for SQL/DS 119
compile_unit_name, description of 201
compile, definition of 394
compiler, definition of 394
COMPUTE command (COBOL)

restrictions on 161

syntax 245

using to assign values to variables 165
%CONDITION variable

description of 127

for C 143

for COBOL 169

for PL/l 183
condition, definition of 394
conditions

constants, for C 331

conditions (continued)

forC 226

handling of 132, 353

LE/VSE, C equivalents 347
constants

Debug Tool interpretation of HLL 125

entering 198

PL/I 186

using in expressions, for COBOL 173
continuation character

Debug Tool 90

for COBOL 163

using in full-screen mode 196
continuing lines 196
conversational, definition of 394
%COUNTRY variable

description of 127

forC 143

for COBOL 169

for PL/I 184
COUNTRY, SET command, syntax 306
__ctest function call

examples 50

invoking Debug Tool with 49

syntax 50
%CU variable

description of 127

forC 143

for COBOL 169

for PL/I 184
cu_spec, description of 201
CURSOR command

syntax 246

using 93
cursor commands, full-screen mode

CLOSE command 96

CURSOR command 93

FIND command 93

OPEN command 96

SCROLL commands 85, 93

SIZE command 96

using in Debug Tool 91

WINDOW ZOOM command 97
CURSOR, AT command, syntax 218
CURSOR, LIST command (Full-Screen Mode),

syntax 276

customizing

profile settings 99

session settings 94
customizing screens 84

D

data type, definition of 394
DBCS
definition of 394

Index

Index

401

Index

DBCS (continued)
SET DBCS command, syntax 306
using 194
using with C 195
using with COBOL 166
variable, assigning new value to 286
DBCS, SET command, syntax 306
debug session
C tasks
COBOL tasks 71
ending 54
invoking your program 53
PL/I tasks 80
preparing for 53
using a C program 57
using a COBOL program 67
using a PL/l program 76
Debug Tool
C commands, interpretive subset 138
COBOL commands, interpretive subset 160
commands, subset 129
condition handling 132
evaluation of HLL expressions 125
exception handling, for C and PL/I 133
functions, using with C 147
functions, using with PL/l 187
IF command, allowable comparisons 349
interface 84
interpretation of HLL variables 125
MOVE command, allowable moves 351
multilanguage programs, using 22
optimized programs, using with 344
PL/I commands, interpretive subset 177
procedure, definition of 394
sample Debug Tool session 5
SET command, allowable moves 352
SQL/DS programs, using with 120
using in batch mode 107
variable, definition of 394
variables
general description 125
using in C 140
using in COBOL 167
using in PL/I 181
Debug Tool interface 54
Debug Tool, invoking your program with 53
debug tools, other, coexistence with 342
debug, definition of 394
debugging in full-screen mode 53
debugging SQL/DS programs 118
declarations, for C, syntax 247
declarations, for COBOL 250
declarations, syntax 246
DECLARE command (PL/I) 251
declaring temporary variables, for C 139

402 Debug Tool/VSE VIR1 User's Guide and Reference

declaring temporary variables, for COBOL 165
declaring temporary variables, for PL/I 180
DEFAULT LISTINGS, SET command, syntax 307
DEFAULT SCROLL, SET command
See SET DEFAULT SCROLL command
DEFAULT WINDOW, SET command, syntax 308
default, definition of 394
DELETE, AT command, syntax 219
DESCRIBE command
syntax 253
using 135, 156
diagnostics, expression, for C 149
DISABLE command, syntax 255
DISPLAY, SET SCROLL command
See SET SCROLL DISPLAY command
displaying
DTCN 110
environment information 135, 156
lines at top of window, Debug Tool 93
values of COBOL variables 166
displaying halted location 56
displaying variable value 56
DL/I
programming considerations 115
programs, debugging in batch mode 118
programs, debugging in interactive mode 118
using Debug Tool with 115
DO command (PL/I), syntax 256
do/while command (C), syntax 256
double-byte character set (DBCS), definition of 394
DOWN, SCROLL command 93
See also SCROLL commands
DTCN utility
data entry errors 113
invoking Debug Tool under CICS 109
modifying LE/VSE options 113
PF key definitions 112
preparing to use 109
profile repository 113
screen areas 110
transaction screen 110
dual terminal mode (CICS) 108
%DUMP, CALL command, syntax 235
See also CALL %DUMP command
dynamic, definition of 394

E
ECHO, SET command, syntax 308
elements, unsupported, for PL/I 354
ENABLE command, syntax 259
enclave
definition of 394
multiple, debugging interlanguage communication
application in 124
multiple, invoking Debug Tool within 103

enclave (continued)

multiple, overview 103
ending a debug session 54
ending Debug Tool within multiple enclaves 104
entering commands

in a Debug Tool session 89

using program function keys 91
entering multiline commands without continuation 197
entering PL/I statements, freeform 186
entry point, definition of 394
entry_name, CALL command (COBOL), syntax 239
ENTRY, AT command, syntax 220

%EPA variable
description of 127
forC 143
for COBOL 169
for PL/I 184

%EPRnN (floating-point registers) variables
description of 127
forC 142
for COBOL 169
for PL/ 183
equate symbols
See SET EQUATE command
EQUATE, SET command
See SET EQUATE command
error numbers in Log window 57
EVALUATE command (COBOL)
restrictions on 162
syntax 260
evaluating expressions
C 149
coBOL 172
HLL 125
evaluation, expression, for C 145
every_clause, description 209
examples
%HEX function for C 147
%HEX function for COBOL 174
%HEX function for PL/I 188
%INSTANCES function for C 148
%INSTANCES function for PL/I 188
%STORAGE function for C 148
%STORAGE function for COBOL 174
%STORAGE function for PL/I 188
assigning values to variables, for C 140
assigning values to variables, for PL/I 181
CEETEST calls, for PL/I 48
CEETEST function calls, for C 45
CEETEST function calls, for COBOL 47
changing point of view, for C 158
changing point of view, for COBOL 176
changing point of view, for PL/l 191
changing point of view, general 131
ctest function 50
declaring variables, for COBOL 166

Index

examples (continued)
displaying program variables, for C 139
displaying program variables, for PL/I 178
displaying results of expression evaluation, for
COBOL 173
displaying values of COBOL variables 166
expression evaluation, for C 146
function calls, for C 148
getting online command syntax help 199
line continuation, for C 197
line continuation, for COBOL 197
PLITEST calls for PL/I 51
run-time TEST option 40
sample Debug Tool session 5
scope, for C 153
specifying run-time TEST option with #pragma 41
specifying run-time TEST option with PLIXOPT 42
using #pragma for compile-time TEST option 16
using blocks in C 155
using COMPUTE command to assign values 165
using constants 198
using constants in expressions, for COBOL 173
using continuation characters 196
using Debug Tool with OPTIMIZE compile-time
option 344
using MOVE command to assign values 165
using qualification, for C 156, 158
using qualification, for COBOL 175
using qualification, for PL/l 190
using SET command to assign values 164
exception handling for C and PL/l 133
exception, definition of 394
execute, definition of 394
execution time, definition of 394
execution-time environment, definition of 394
EXIT, AT command, syntax 220
expression
definition of 394
description of 202
diagnostics, for C 149
displaying values, for C 139
displaying values, for COBOL 173
displaying values, for PL/I 178
evaluation for C 145, 149
evaluation for COBOL 172
evaluation of HLL 125
evaluation, operators and operands for C 346
for PL/l 186
subset, description of 203
using constants in, for COBOL 173
Expression command (C), syntax 261
Expression, LIST command, syntax 276

Index 403

Index

F

file, definition of 395
FIND command

using with windows 93
FIND command, syntax 262
finding characters or strings 93
finding renamed source file 57
finding text in window 54
for command (C), syntax 263
%FPRn (floating-point registers) variables

description of 127

forC 142

for COBOL 168

for PL/l 183
freeform input, PL/I statements 186
frequency count

definition of 395
FREQUENCY, LIST command

See LIST FREQUENCY command
FREQUENCY, SET command, syntax 310
full-screen mode commands

AT CURSOR 218

AT prefix 229

CLEAR prefix 243

continuation character, using in 196

CURSOR 91, 93, 246

definition of 395

DESCRIBE CURSOR 253

DISABLE Prefix 255

ENABLE Prefix 259

FIND 262

IMMEDIATE 270

LIST CURSOR 276

PANEL 289

PANEL COLORS 97

PANEL LAYOUT 95

PANEL LISTINGS 289

PANEL PROFILE 99

PANEL SOURCE 289

Prefix 292

QUERY Prefix 297

RETRIEVE 298

SCROLL 93

SET COLOR 304

SET DEFAULT SCROLL 307

SET DEFAULT WINDOW 308

SET KEYS 313

SET LOG NUMBERS 314

SET MONITOR NUMBERS 314

SET SCREEN 321

SET SCROLL DISPLAY 321

SET SUFFIX 323

SHOW Prefix 326

WINDOW CLOSE 96, 336

WINDOW OPEN 96, 336

404 Debug Tool/VSE V1R1 User's Guide and Reference

full-screen mode commands (continued)
WINDOW SIZE 96, 337
WINDOW ZOOM 97, 338
full-screen mode, debugging in 53
full-screen mode, using session panel in 85
function calls, for C 146
function, unsupported for PL/I 354

G

%GENERATION function, for PL/I 135, 188
GLOBAL, AT command, syntax 221
GO command
syntax 265
GOTO command
syntax 266
GOTO LABEL command, syntax 267
%GPRn (general purpose registers) variables
description of 127
forC 142
for COBOL 168
for PL/I 182

H

H constant (COBOL) 198
halted location, displaying 56
%HARDWARE variable
description of 127
for C 143
for COBOL 169
for PL/I 184
header fields, Debug Tool session panel 84
help, getting
command syntax 199
for session 102
help, how to find 54
%HEX function 147, 188
forC 134
for COBOL 134, 174
for PL/l 134
high-level language (HLL), definition of 395

highlighting, changing in Debug Tool session panel

HISTORY, SET command, syntax 311
HLL, definition of 395
hooks
compiling with, C 12
compiling with, COBOL 16
compiling with, PL/I 19
definition of 395
general description 4
removing from application 343
rules for placing 15

Index

I K
1/0, definition of 395 KEYS, SET command, syntax 313
if command (C), syntax 268 keywords
IF command (COBOL) abbreviating 195
allowable comparisons, Debug Tool 349 reserved for C 346
restrictions on 162 reserved for COBOL 349
syntax 269 reserved for PL/I 353
IF command (PL/I), syntax 269 using with C 195
IMMEDIATE command, syntax 270
improving Debug Tool performance 343 L
inactive block, definition of 395
information LABEL, AT command, syntax 222
displaying environmental 135, 156 LANGUAGE, SET NATIONAL command, syntax 315
initial setting, definition of 395 LANGUAGE, SET PROGRAMMING command,
input areas, order of processing, Debug Tool 90 syntax 317
INPUT command LAST, LIST command, syntax 278
syntax 271 LAYOUT, PANEL command
instances 148, 188 See PANEL commands
%INSTANCES function LE/VSE
forC 134 definition of 395
for PL/I 134 LEFT, SCROLL command 93
interactive, definition of 395 See also SCROLL commands
INTERCEPT, SET command librarian sublibrary
See SET INTERCEPT command See sublibrary
interlanguage communication (ILC) application, library routine, definition of 395
debugging 124 line breakpoint, setting 56
interlanguage programs, using with Debug Tool 22 line continuation 196
interpretive subset LINE NUMBERS, LIST command, syntax 282
general description 129 %LINE variable
of C commands 138, 346 description of 127
of COBOL commands 160, 349 forC 143
of PL/l commands 177, 353 for COBOL 169
interrupt, attention (ATTN) for PL/l 184
effect of during interactive sessions 133 line wrap, definition of 395
how to initiate 133 LINE, AT command, syntax 230
in Debug Tool 133 LINES, LIST command, syntax 283
required LE/VSE run-time options 133 link requirements
intrinsic functions, Debug Tool 125 for DL/I 116
invoking Debug Tool for SQL/DS 120
CEETEST callable service 43—49 link-edit, definition of 395
ctest function 49—>51 linkage editor, definition of 395
overview 42 LIST (blank) command, syntax 273
PLITEST built-in subroutine 51 LIST AT command, syntax 273
run-time TEST option 33—37 LIST CALLS command, syntax 275
under CICS 43 LIST commands 272—284
within an enclave 103 LIST CURSOR command (Full-Screen Mode),
invoking Debug Tool under CICS with compile-time syntax 276
directives 114 LIST Expression command, syntax 276
invoking your program 53 LIST FREQUENCY command
issuing commands syntax 277
in a Debug Tool session 89 LIST LAST command, syntax 278
using program function keys 91 LIST MONITOR command, syntax 279
LIST NAMES command
syntax 279

Index 405

Index

LIST ON command (PL/I), syntax 281
LIST PROCEDURES command, syntax 281
LIST REGISTER command
syntax 282
using 137
LIST STATEMENT NUMBERS command, syntax 282
LIST STATEMENTS command, syntax 283
LIST STORAGE command
syntax 283
using with PL/I 181
listing
definition of 396
files used by Debug Tool 27
registers 137
SET DEFAULT LISTINGS command, syntax 307
LISTINGS, PANEL command
See PANEL commands
literal constants, entering 198
%LOAD variable
description of 128
forC 143
for COBOL 170
for PL/l 184
load_spec, description of 203
LOAD, AT command, syntax 224
log file
clearing 240
default names 88
description 30
specifying 88
using 87
using as a commands file 88
LOG NUMBERS, SET command, syntax 314
Log window, Debug Tool
Debug Tool 90
definition of 396
retrieving input lines from 199
retrieving lines from 92
using 87
Log window, error numbers in 57
LOG, SET command, syntax 313
low-level debugging 136
%LPRn (floating-point registers) variables
description of 127
forC 142
for COBOL 168
for PL/l 183

M

MainFrame Interface (MFI)

general description 2
mechanisms for invoking Debug Tool under CICS 109
MFI (MainFrame Interface)

See MainFrame Interface (MFI)

406 Debug Tool/VSE V1R1 User's Guide and Reference

modes
batch
definition of 393
FIND command 262
using Debug Tool in 107
debugging DL/I programs in 118
debugging SQL/DS programs in 120
dual terminal (CICS) 108
non-terminal mode (CICS) 108
single terminal (CICS) 108
MONITOR command
clearing 240
syntax 284
viewing output from, Debug Tool 87
MONITOR NUMBERS, SET command, syntax 314
Monitor window, Debug Tool
closing 96
definition of 396
general description 87
invoking 96
MONITOR, LIST command, syntax 279
monitoring program execution
in Debug Tool 87
more than one language, debugging programs with 22
MOVE command (COBOL)
allowable moves, Debug Tool 351
restrictions on 161
syntax 286
using to assign values to variables 165
moving around windows in Debug Tool 93
moving the cursor, Debug Tool 93
MSGID, SET command, syntax 315
multilanguage programs, using with Debug Tool 22
multiline commands
using continuation character 196
without continuation character 197
multiple enclaves
ending Debug Tool 104
interlanguage communication application,
debugging 124
invoking Debug Tool with 103
multiple enclaves, overview 103
using breakpoints 104

N

name scoping
See point of view, changing
NAMES, LIST command
See LIST NAMES command
NATIONAL LANGUAGE, SET command, syntax 315
navigating session panel windows 93
NEXT, SCROLL command
See SCROLL commands
%NLANGUAGE variable
description of 128

%NLANGUAGE variable (continued)
for C 143
for COBOL 170
for PL/I 184
non-terminal mode (CICS) 108
nonconversational, definition of 396
Null command, syntax 287

NUMBERS, LIST STATEMENT command, syntax 282

NUMBERS, SET LOG command, syntax 314

NUMBERS, SET MONITOR command, syntax 314

)

objects, C 153
OCCURRENCE, AT command, syntax 225
ON command (PL/l), syntax 287
ON, LIST command (PL/l), syntax 281
online help, getting for session 102
OPEN, WINDOW command

See WINDOW commands
opening Debug Tool session panel windows 96
operators and operands for C 346
OPTIMIZE compile-time option, using Debug Tool

with 344

options module, CEEUOPT run-time 116
options, compile-time

forC 12

for COBOL 16

for PL/l 19

TEST, using for DL/l 115

TEST, using for SQL/DS 119
Options, definition of 396
options, run-time

TEST 33

P

PACE, SET command, syntax 316
PANEL commands

changing session panel colors and highlighting 97

syntax 289

using 95
panels, full-screen mode

Color Selection 98

definition of 396

header fields, Session 84

Profile 99

Session 85, 89

Source Identification 289

Window Layout Selection 95
parameter, definition of 396
path point

definition of 396

differences between languages 229
PATH, AT command, syntax 228

%PATHCODE variable
description of 128
forC 144
for COBOL 170
for PL/l 184
PERFORM command (COBOL)
restrictions on 162
syntax 291
performance, improving Debug Tool 343
PF key, setting 56
PF keys, defining in Debug Tool 91
PFKEY, SET command
See SET PFKEY command
phase_name, description of 202
phase, definition of 396
PL/I
attributes for variables 181, 246
built-in functions 187
condition handling 353
constants 186
expressions 186
notes on using 195
reserved keywords 353
session variables 180
statements 177
PL/I commands
ANALYZE 206
Assignment 207
AT ALLOCATE 210
BEGIN 232
conditions 353
DECLARE 251
DO 256
IF 269
interpretive subset of 353
LIST ON 281
ON 287
SELECT 301
SET WARNING 325
PL/I structures 179
%PLANGUAGE variable
description of 128
forC 144
for COBOL 171
for PL/l 185
PLITEST built-in subroutine
examples 51
syntax 51
PLIXOPT string
specifying run-time TEST option with 41
point of view
changing
forC 158
for COBOL 176
for PL/l 191
general description 131

Index

Index

407

Index

positioning lines at top of windows 93 %PROGRAM variable
#pragma statement description of 128
specifying compile-time TEST option 16 forC 144
specifying run-time TEST option with 41 for COBOL 171
preferences file for PL/l 185
default name 29 program variable, definition of 397
description 29 PROGRAMMING LANGUAGE, SET command,
Prefix area, Debug Tool 89 syntax 317
prefix area, definition of 396 programs
prefix commands CICS, debugging 107
AT 229 definition of 396
CLEAR 243 DLI, debugging 115
DISABLE 255 invoking for a session 42
ENABLE 259 preparing DL/I 115
QUERY 297 preparing SQL/DS 119
SHOW 326 qualification of
syntax 292 forC 156
using in Debug Tool 90 for COBOL 174
preparing and using CEEUOPT to invoke Debug for PL/I 189
Tool 114 general description 130
preparing for debugging 53 reducing size 343
preparing programs SQL/DS, debugging 118
compile-time TEST option, for C 12 variables, accessing for C 138
compile-time Test option, for COBOL 16 variables, accessing for COBOL 164
compile-time TEST option, for PL/I 19 variables, accessing for PL/l 178
considerations, size and performance 343 pseudo-conversational transaction, definition of 397
for DL/l 115 PX contant (PL/) 198
for SQL/DS 119
run-time TEST option 33 Q
preprocessor requirements for SQL/DS 119
primary entry point, definition of 394 qualification
PROCEDURE command definition of 397
syntax 293 description of, for C 156
procedure, CALL, syntax 240 description of, for COBOL 174
procedure, definition of 396 description of, for PL/I 189
PROCEDURES, LIST command, syntax 281 general description 130
process, definition of 396 using, forC 157
profile repository for DTCN utility 113 using, for COBOL 174
profile settings using, for PL/I. 189
changing in Debug Tool 99 QUALIFY, SET command
file used to preserve 29 See SET QUALIFY command
panel 99 QUERY command, syntax 294
PROFILE, PANEL command QUERY Prefix, syntax 297
See PANEL commands QUIT command
profile, definition of 396 syntax 297
Program
stepping through 56 R

program hooks
compiling with, C 12
compiling with, COBOL 16

%RC (return code) variable
description of 128

compiling with, PL/I 19 Ig: gor;é‘r_ 171
general description 4 for PL/I 185

removing 343
rules for placing 15
program unit, definition of 396

record format, definition of 397
record, definition of 397

408 Debug Tool/VSE V1R1 User's Guide and Reference

recording
commands, Debug Tool 87
session with the log file 87
recursion 148, 188
%RECURSION function 148, 188
forC 135
for PL/l 135
reference, definition of 397
references, description of 203
REFRESH, SET command
See SET REFRESH command
REGISTER, LIST command
See LIST REGISTER command
registers, listing 137
removing statement and symbol tables 343
repeating breakpoints 209
requirements
compile, for DL/l 115
compile, for SQL/DS 119
for debugging CICS programs 107
link, for DL/l 116
link, for SQL/DS 120
preprocessor, for SQL/DS 119
reserved keywords
forC 346
for COBOL 349
for PL/l 353
restrictions
debugging under CICS 114
expression evaluation, for COBOL 172
on COBOL-like commands 161
RETRIEVE command
syntax 298
using 92
retrieving commands
from the Log and Source windows 199
with RETRIEVE command 92
retrieving lines from Log or Source windows 92
REWRITE, SET command, syntax 320
RIGHT, SCROLL command 93
See also SCROLL commands
RUN command
See GO command
run time
definition of 397
environment, displaying attributes of 135, 156
option, TEST 33
options module, CEEUOPT 116
specifying TEST option with #pragma 41
specifying TEST option with PLIXOPT 41
suboption processing order 37
run unit, definition of 397
run-time environment, definition of 397
run-time TEST option
processing order for suboptions 37
specifying with #pragma 41

Index

run-time TEST option (continued)
specifying with PLIXOPT 41
syntax 33
using 33
run, definition of 397
Run, definition of 397
%RUNMODE variable
description of 128
forC 144
for COBOL 172
for PL/l 185
running a program 56

S

SAM ESDS file, definition of 397
SBCS (single-byte character set), definition of 397
scopes, C 153
SCREEN, SET command, syntax 321
screens, customizing 84
Scroll area, Debug Tool 89
SCROLL commands

syntax 299

using 85, 93

using SCROLL TO 93
SCROLL DISPLAY, SET command

See SET SCROLL DISPLAY command
SCROLL, SET DEFAULT command, syntax 307
scrolling

session panel windows 93
scrolling Source window 55
searching for characters or strings 93
SELECT command (PL/I), syntax 301
semantic error, definition of 397
sequence number, definition of 397
session panels, Debug Tool

changing colors and highlighting in 97

changing window layout 95

closing 96

definition of 397

header fields, Debug Tool 84

modifying 89

opening 96

sizing windows in 96

using 84

variables, for PL/l 180

windows, description of 85
session settings

changing in Debug Tool 94
session variables

definition of 397
SET CHANGE command, syntax 303
SET COLOR command, syntax 304
SET command (COBOL)

allowable moves, Debug Tool 352

restrictions on 162

Index

409

Index

SET command (COBOL) (continued) settings
syntax 326 changing Debug Tool profile 99
using to assign values to variables 164 changing Debug Tool session 94
SET commands 302—326 profile settings file 29
SET COUNTRY command, syntax 306 short forms for commands, using 91
SET DBCS command, syntax 306 SHOW Prefix command, syntax 326
SET DEFAULT LISTINGS command, syntax 307 single terminal mode (CICS) 108
SET DEFAULT SCROLL command single-byte character set (SBCS), definition of 397
syntax 307 SIZE, WINDOW command
using 85 See WINDOW commands
SET DEFAULT WINDOW command, syntax 308 sizing session panel windows 96
SET ECHO command, syntax 308 source
SET EQUATE command definition of 397
clearing 240 displaying with Debug Tool 86
creating 92 files used by Debug Tool 27
syntax 309 Source Identification panel, Debug Tool 289
using 92 Source window
SET EXECUTE command, syntax 310 Debug Tool 86, 90
SET FREQUENCY command, syntax 310 definition of 398
SET HISTORY command, syntax 311 retrieving input lines from, Debug Tool 199
SET INTERCEPT command retrieving lines from, Debug Tool 92
syntax 311 SOURCE, SET command, syntax 322
using with C programs 150 SOURCES, PANEL command
SET KEYS command, syntax 313 See PANEL commands
SET LOG command, syntax 313 specifying a range of statements 204
SET LOG NUMBERS command, syntax 314 SQL/DS
SET MONITOR NUMBERS command, syntax 314 programming considerations 119
SET MSGID command, syntax 315 programs, debugging in batch mode 120
SET NATIONAL LANGUAGE command, syntax 315 programs, debugging in interactive mode 121
SET PACE command, syntax 316 using Debug Tool with 118
SET PFKEY command starting Debug Tool
syntax 316 See invoking Debug Tool
using in Debug Tool 91 STATEMENT NUMBERS, LIST command, syntax 282
SET PROGRAMMING LANGUAGE command, statement tables, removing 343
syntax 317 %STATEMENT variable
SET QUALIFY command description of 128
syntax 318 for C 145
using, for C 158 for COBOL 172
using, for COBOL 176 for PL/l 185
using, for PL/I 191 statement_id_range, description of 204
SET REFRESH command statement_id, description of 203
syntax 320 statement_label, description of 205
SET REWRITE command, syntax 320 STATEMENT, AT command, syntax 230
SET SCREEN command, syntax 321 STATEMENTS, LIST command, syntax 283
SET SCROLL DISPLAY command statements, PL/l 177, 186
syntax 321 statements, specifying a range 204
using 85 static, definition of 398
SET SOURCE command, syntax 322 STEP command
SET SUFFIX command, syntax 323 syntax 327
SET TEST command, syntax 323 step, definition of 398
SET WARNING command (C and PL/I) stepping through a program 56
syntax 325 stmt_id_spec, description of 204
using with PL/I 187 storage
setting a line breakpoint 56 definition of 398
setting a PF key 56 storage classes, C 154

410 Debug Tool/VSE VIR1 User's Guide and Reference

%STORAGE function 148, 188
forC 134
for COBOL 134, 174
for PL/I 134
STORAGE, LIST command
See LIST STORAGE command
string substitution, using 92
strings
searching for using window 93
sublibrary
subroutine, definition of 398
subset
of C commands 346
of COBOL commands 349
of commands, general description 129
of PL/l commands 353
substitution, using string 92
%SUBSYSTEM variable
description of 129
forC 145
for COBOL 172
for PL/l 186
suffix area, definition of 398
SUFFIX, SET command, syntax 323
switch command (C), syntax 328
symbol tables, removing 343
synonyms
removing 240
syntactic analysis, definition of 398
syntax
common elements 200
definition of 398
error, definition of 398
examples of how to read 195
syntax diagrams
%GENERATION function 135
%HEX function 134
%INSTANCES function 134
%RECURSION function 135
%STORAGE function 134
block_spec 200
C compile-time TEST option 13
CEETEST, forC 44
CEETEST, for COBOL 44
CEETEST, for PL/I 44
COBOL compile-time TEST option 17
compile-time PRTEXIT option 23
ctest function 50
cu_spec 201
load_spec 203
PL/I compile-time TEST option 19
PLITEST built-in subroutine 51
run-time TEST option 33
statement_id_range 204
stmt_id_spec 204

Index

%SYSTEM variable
description of 129
for C 145
for COBOL 172
for PL/I 186

T

temporary variables
declaring, for C 139
declaring, for COBOL 165
declaring, for PL/I 180
definition of 398
TERMINATION, AT command, syntax 231
TEST compile-time option
forC 12
for COBOL 16
for PL/I 19
using #pragma statement to specify 16
using for DL/ 115
using for SQL/DS 119
TEST option, compile-time 53
TEST, SET command, syntax 323
TO line, SCROLL command
See SCROLL commands
token, definition of 398
TOP, SCROLL command
See SCROLL commands
TRAP, LE/VSE run-time option 131, 133
TRIGGER command, syntax 331
trigraphs
definition of 398
searching for 94
using with C 195
truncating commands 91, 195

U

unsupported HLL modules, coexistence with 342
unsupported PL/I language elements 354
UP, SCROLL command 93
See also SCROLL commands
USE command, syntax 333
used by Debug Tool
commands file 29
determining userid in filenames 30
log file 30
preferences file 29
profile settings file 29
source and listing files 27
specifying 31
userid, determining default 30
using constants in expressions, for COBOL 173
hex 174
storage 174

Index

411

Index

utility, definition of 398

\'

values
assigning to C variables 140
assigning to COBOL variables 164
assigning to PL/I variables 181

variable value, displaying 56

variables
accessing program, for C 138
accessing program, for COBOL 164
accessing program, for PL/l 178
assigning values to, for C 140
assigning values to, for COBOL 164
assigning values to, for PL/I 181

compatible attributes in multiple languages

DBCS, assigning new value to 286
Debug Tool

detailed descriptions 126

general description 125

interpretation of HLL 125

using in C 140

using in COBOL 167

using in PL/I 181
definition of 398
description of Debug Tool, for COBOL
displaying, for C 139
displaying, for COBOL 166
displaying, for PL/I 178
qualification of

forC 156

for COBOL 174

for PL/I 189

general description 130
removing 240
session, for PL/l 180
temporary, declaring

forC 139

for COBOL 165

for PL/I 180

w

warning, for PL/I 187
generation 188
WARNING, SET command

See SET WARNING command (C and PL/I)

while command (C), syntax 335
WINDOW commands

CLOSE, syntax 336

OPEN, syntax 336

opening and closing session panel windows with 96

SIZE, syntax 337
sizing session panel windows with 96
syntax 335

412 Debug Tool/VSE VIR1 User's Guide and Reference

WINDOW commands (continued)
ZOOM, syntax 338

window control, Debug Tool
changing source files 55
displaying halted location 56
finding text 54
scrolling 55

Window id area, Debug Tool 90

Window Layout Selection panel 95

window, error numbers in 57

WINDOW, SET DEFAULT command, syntax 308

windows, Debug Tool 54
windows, Debug Tool session panel
changing configuration 95
changing session settings of 94
closing 96
Log 87
Monitor 87
opening 96
scrolling 93
sizing 96
Source 86
using 85
zooming 97
word wrap, definition of 398

Z

ZOOM, WINDOW command
See WINDOW commands
zooming a window, Debug Tool 97

We'd Like to Hear from You

Debug Tool for VSE/ESA
User's Guide and Reference
Release 1

Publication No. SC26-8797-00

Please use one of the following ways to send us your comments about this book:

¢ Mail—Use the Readers' Comments form on the next page. If you are sending the form
from a country other than the United States, give it to your local IBM branch office or
IBM representative for mailing.

¢ Fax—Use the Readers' Comments form on the next page and fax it to this U.S. number:
800-426-7773.

¢ Electronic mail—Use this Internet ID:
— Internet: comments @vnet.ibm.com
Be sure to include the following with your comments:
— Title and publication number of this book
— Your name, address, and telephone number if you would like a reply

Your comments should pertain only to the information in this book and the way the
information is presented. To request additional publications, or to comment on other IBM
information or the function of IBM products, please give your comments to your IBM
representative or to your IBM authorized remarketer.

IBM may use or distribute your comments without obligation.

Readers' Comments

Debug Tool for VSE/ESA
User's Guide and Reference
Release 1

Publication No. SC26-8797-00

How satisfied are you with the information in this book?

Very Very
Satisfied Satisfied Neutral Dissatisfied Dissatisfied
Technically accurate O O O O O
Complete O | O] |
Easy to find]] O] |
Easy to understand O] O | |
Well organized m]] O | |
Applicable to your tasks O O O O O
Grammatically correct and consistent O O O O O
Graphically well designed O] O]]
Overall satisfaction O | O o |

May we contact you to discuss your comments? Yes No

Would you like to receive our response by E-Mail?

Your E-mail address

Name Address

Company or Organization

Phone No.

Readers' Comments
SC26-8797-00

Fold and Tape

Please do not staple

Fold and Tape

BUSINESS REPLY MAIL

FIRST-CLASS MAIL PERMIT NO. 40 ARMONK, NEW YORK

POSTAGE WILL BE PAID BY ADDRESSEE

IBM Corporation

Department HHX/H3

P.O. Box 49023

San Jose, CA

United States of America 95161-9023

NO POSTAGE
NECESSARY

IF MAILED IN THE
UNITED STATES

Fold and Tape

SC26-8797-00

Please do not staple

Fold and Tape

Cut or Fold
Along Line

Cut or Fold
Along Line

Printed in the United States of America
on recycled paper containing 10%
recovered post-consumer fiber.

Spine information:

7= Debug Tool User's Guide and Reference Release I

	Contents
	Notices
	Programming Interface Information
	Trademarks

	About This Book
	IBM Language Environment for VSE/ESA
	Debug Tool
	Who Might Use This Book
	How This Book Is Organized
	Using Your Documentation
	How to Read the Syntax Diagrams

	Part 1. Getting Started
	Chapter 1. Before You Begin Debugging
	Debug Tool Debugging Environments
	Debug Tool Sessions
	Full-Screen Session Interface
	Denoting Environmental Differences
	Terminology

	Planning to Run Your Program with Debug Tool
	A Sample Interactive Debug Tool Session (COBOL)

	Chapter 2. Preparing to Debug Your Program
	Compiling a C Program with the Compile-Time TEST Option
	Placing Compiled-in Hooks for Functions and Nested Blocks
	Placing Compiled-in Hooks for Statements and Path Points
	Using #pragma to Specify Compile-Time TEST Option

	Compiling a COBOL Program with the Compile-Time TEST Option
	Compiling a PL/I Program with the Compile-Time TEST Option
	Debugging Multilanguage Programs
	Debugging an Application Fully Supported by LE/VSE
	Debugging an Application Partially Supported by LE/VSE

	Compiler Listings (and Program Source)
	Debug Tool Compiler Print Exit
	 Assigning SYSLST to Disk

	Chapter 3. Beginning a Debugging Session
	Files Used By Debug Tool
	Source and Listing Files
	Preferences File
	Commands File
	Profile Settings File
	The Log File
	Determining the Default Userid
	Batch (non-CICS) Environment
	CICS Environment

	Specifying Files to Debug Tool
	Sublibrary Members
	SAM ESDS Files and Sequential Disk Files
	System Input Device (SYSIPT)

	Using the Run-Time TEST Option
	Run-Time TEST Option Syntax
	Run-Time TEST Option Considerations
	Run-Time TEST Option Examples
	Specifying Run-Time TEST Option with #pragma runopts in C
	Specifying Run-Time TEST Option with PLIXOPT string in PL/I

	Invoking Your Program When Starting a Debugging Session
	Invoking Your Program for a Debugging Session
	Invoking Debug Tool under CICS

	Using Alternative Debug Tool Invocation Methods
	Invoking Debug Tool with CEETEST
	Examples of CEETEST Function Calls for C
	Examples of CEETEST Calls for COBOL
	Examples of CEETEST Calls for PL/I

	Invoking Debug Tool with the __ctest() Function
	Examples of __ctest() Calls for C

	Invoking Debug Tool with PLITEST
	Examples of PLITEST Calls for PL/I

	Chapter 4. Debugging Your Programs in Full-Screen Mode
	Preparing for Debugging
	Invoking Your Program with Debug Tool
	Ending a Debug Session
	Basic Tasks of Debug Tool
	Debug Tool Interface
	Help
	Window Control
	Finding Text
	Scrolling
	Changing Source Files
	Displaying the Halted Location

	Setting a Line Breakpoint
	Stepping through or Running Your Program.
	Displaying a Variable's Value
	Continuously Displaying a Variable's Value
	Setting a PF Key
	Error Numbers for Messages in the log Window
	Finding a Renamed Source File Using Debug Tool

	Using a C Program to Demonstrate a Debug Tool Session
	C Tasks
	Setting a Breakpoint to Halt when Certain Functions Are Called
	Modifying the Value of a Variable
	Stopping on a Line Only if a Condition Is True
	Debugging When Only a Few Parts Are Compiled with TEST
	Capturing Output to stdout
	Invoking Interactive Function Calls
	Displaying Raw Storage
	Getting a Function Traceback
	Tracing the Run-Time Path for Code Compiled with TEST
	Finding Unexpected Storage Overwrite Errors
	Finding Uninitialized Storage Errors
	Setting a Breakpoint to Halt before Calling a NULL Function

	Using a COBOL Program to Demonstrate a Debug Tool Session
	COBOL Tasks
	Capturing I/O to the System Console
	Setting a Breakpoint to Halt when Certain Functions Are Called
	Modifying the Value of a Variable
	Stopping on a Line Only if a Condition Is True
	Debugging When Only a Few Parts Are Compiled with TEST
	Displaying Raw Storage
	Getting a Function Traceback
	Tracing the Run-Time Path for Code Compiled with TEST
	Finding Unexpected Storage Overwrite Errors
	Setting a Breakpoint to Halt before Calling an invalid Program

	Using a PL/I Program to Demonstrate a Debug Tool Session
	PL/I Tasks
	Setting a Breakpoint to Halt when Certain Functions Are Called
	Modifying the Value of a Variable
	Stopping on a Line Only if a Condition Is True
	Debugging When Only a Few Parts Are Compiled with TEST
	Displaying Raw Storage
	Getting a Function Traceback
	Tracing the Run-Time Path for Code Compiled with TEST
	Finding Unexpected Storage Overwrite Errors
	Setting a Breakpoint to Halt before Calling an Undefined Program

	Chapter 5. Using the Debug Tool Interfaces
	Customizing Debug Tool for Your Environment
	Using the Debug Tool Session Panel
	Session Panel Header Fields

	Session Panel Windows
	Source Window �1�
	Monitor Window �3�
	Log Window �2�
	Using the Session Log File to Maintain a Record of Your Session

	Entering Commands in a Debug Tool Session
	Command Sequencing
	Using the Command Line
	Using Prefix Commands
	Using Cursor Commands
	Using Program Function (PF) Keys to Enter Commands

	Defining PF Keys
	Abbreviating Commands
	Retrieving Commands
	Retrieving Lines from the Session Log and Source Windows
	Creating EQUATES and Using String Substitution

	Navigating Through Debug Tool Session Panel Windows
	Moving the Cursor
	Scrolling the Windows
	Positioning Lines at the Top of Windows
	Searching for a Character or Character String

	Customizing Your Session
	Changing Session Panel Window Layout
	Opening and Closing Session Panel Windows
	Sizing Session Panel Windows
	Intersecting Windows
	Horizontal Windows
	Vertical Windows
	Zooming a Window
	Customizing Colors
	Customizing Settings

	Getting Help During Your Session

	Chapter 6. Multiple Enclaves
	Invoking Debug Tool within an Enclave
	Using the Source Window
	Retaining a Log File of your Debug Tool Session
	Processing Commands from a Commands File
	Using Breakpoints within Multiple Enclaves
	Ending a Debug Tool Session
	Using Debug Tool Commands within Multiple Enclaves

	Chapter 7. Using Debug Tool in Different Modes and Environments
	Using Debug Tool in Batch Mode
	Debugging CICS Programs
	Debug Modes under CICS
	Mechanisms for Invoking Debug Tool under CICS
	Preparing and Using DTCN to Invoke Debug Tool under CICS
	DTCN Screen
	Header Area
	Input Area
	Message Line
	DTCN PF Key Definitions
	Profile Repository
	Modifying Other Options
	DTCN Data Entry Errors

	Preparing and Using CEEUOPT to Invoke Debug Tool under CICS
	Preparing and Using Compile-Time Directives To Invoke Debug Tool under CICS
	Restrictions When Debugging Under CICS

	Debugging DL/I Programs
	Programming Considerations
	Program Preparation
	Compile Requirements
	Link Requirements
	Using Debug Tool with DL/I Programs
	Batch Mode
	Interactive Mode

	Debugging SQL/DS Programs
	Programming Considerations
	Program Preparation
	Preprocessor Requirements
	Compile Requirements
	Link Requirements
	Using Debug Tool with SQL/DS Programs
	Batch Mode
	Interactive Mode

	Part 2. Language-Specific Information
	Chapter 8. Debug Tool Support of Programming Languages
	Multiple Enclaves and Interlanguage Communication (ILC)
	Compatible Attributes Mapped Between HLL Data Types
	Debug Tool Evaluation of HLL Expressions
	Debug Tool Interpretation of HLL Variables and Constants
	Variables
	Constants
	Debug Tool Variables (or Intrinsic Functions)
	Modifiable Debug Tool Variables
	Nonmodifiable Debug Tool Variables

	Interpretive Subsets
	Qualifying Variables and Changing the Point of View
	Qualification
	Changing the Point of View

	Debug Tool Handling of Conditions and Exceptions
	Condition Handling in Debug Tool
	When a Condition Can Occur
	What Happens When a Condition Occurs

	Exception Handling within Expressions (C and PL/I only)

	Requesting an Attention Interrupt During Interactive Sessions
	Debug Tool's Built-in Functions
	For Use with C, COBOL, and PL/I
	%HEX
	%STORAGE

	For Use with C and PL/I
	%INSTANCES
	%RECURSION

	For Use with PL/I
	%GENERATION

	Displaying Environmental Information
	Low-Level Debugging

	Chapter 9. Using Debug Tool with C Programs
	Debug Tool Commands
	Using C Variables with Debug Tool
	Accessing Program Variables
	Displaying Values of C Variables or Expressions
	Declaring Temporary Variables
	Assigning Values to C Variables

	Using Debug Tool Variables in C
	C Expressions
	Function Calls
	Using Debug Tool Functions with C
	Using %HEX
	Using %STORAGE
	Using %RECURSION
	Using %INSTANCES

	Debug Tool Evaluation of C Expressions
	Using SET INTERCEPT with C Programs
	Objects and Scopes
	Storage Classes

	Blocks and Block Identifiers for C
	Displaying Environmental Information
	Using Qualification for C
	Using Qualifiers
	Changing the Point of View

	Chapter 10. Using Debug Tool with COBOL Programs
	The Debugging Environment Provided for COBOL Programs
	Debug Tool Commands
	Restrictions on COBOL-like Commands
	COMPUTE
	MOVE
	SET
	IF
	EVALUATE
	PERFORM
	CALL
	COBOL Command Format

	Using COBOL Variables with Debug Tool
	Accessing Program Variables
	Assigning Values to COBOL Variables
	SET
	MOVE
	COMPUTE

	Declaring Temporary Variables
	Displaying Values of COBOL Variables
	Using DBCS Characters

	Using Debug Tool Variables in COBOL
	Debug Tool Evaluation of COBOL Expressions
	Displaying the Results of Expression Evaluation
	Using Constants in Expressions

	Using Debug Tool Functions with COBOL
	Using %HEX
	Using the %STORAGE Function

	Using Qualification for COBOL
	Using Qualifiers
	Changing the Point of View

	Chapter 11. Using Debug Tool with PL/I Programs
	Debug Tool Commands
	PL/I Language Statements

	Using PL/I Variables with Debug Tool
	Accessing Program Variables
	Displaying Values of PL/I Variables or Expressions
	Structures
	LIST STORAGE

	Assigning Values to PL/I Variables

	Using Debug Tool Variables in PL/I
	PL/I Expressions
	Using DBCS Characters - Freeform Input

	PL/I Built-In Functions
	Using SET WARNING Command with Built-Ins

	Using Debug Tool Functions with PL/I
	Using %GENERATION
	Using %HEX
	Using %STORAGE
	Using %RECURSION
	Using %INSTANCES

	Using Qualification for PL/I
	Using Qualifiers
	Changing the Point of View

	Part 3. Debug Tool Reference
	Chapter 12. Using Debug Tool Commands
	Command Modes and Language Support
	Entering Commands
	Command Format
	Character Set and Case
	Using DBCS
	Using C
	Using COBOL and PL/I

	Abbreviating Keywords
	Continuation (Full-screen mode)
	Using File Input
	Entering Multiline Commands without Continuation

	Significance of Blanks
	Comments
	Constants

	Retrieving Commands from the Log and Source Windows
	Online Command Syntax Help
	Common Syntax Elements
	Block_Name
	Block_Spec
	Compile_Unit_Name
	CU_Spec
	Expression
	Phase_Name
	Load_Spec
	References
	Statement_Id
	Statement_Id_Range and Stmt_Id_Spec
	Statement_Label

	Chapter 13. Debug Tool Commands
	ANALYZE Command (PL/I)
	Assignment Command (PL/I)
	AT Command
	Every_Clause
	AT ALLOCATE (PL/I)
	AT APPEARANCE
	AT CALL
	AT CHANGE
	AT CURSOR (Full-Screen Mode)
	AT DELETE
	AT ENTRY/EXIT
	AT GLOBAL
	AT LABEL
	AT LINE
	AT LOAD
	AT OCCURRENCE
	AT PATH
	AT Prefix (Full-Screen Mode)
	AT STATEMENT
	AT TERMINATION

	BEGIN Command (PL/I)
	block Command (C)
	break Command (C)
	CALL Command
	CALL %DUMP
	CALL entry_name (COBOL)
	CALL procedure

	CLEAR Command
	CLEAR Prefix (Full-Screen Mode)

	COMMENT Command
	COMPUTE Command (COBOL)
	CURSOR Command (Full-Screen Mode)
	Declarations
	Language Compatible Attributes

	Declarations (C)
	Declarations (COBOL)
	DECLARE Command (PL/I)
	DESCRIBE Command
	DISABLE Command
	DISABLE Prefix (Full-Screen Mode)

	do/while Command (C)
	DO Command (PL/I)
	ENABLE Command
	ENABLE Prefix (Full-Screen Mode)

	EVALUATE Command (COBOL)
	Expression Command (C)
	FIND Command
	for Command (C)
	GO Command
	GOTO Command
	GOTO LABEL Command
	if Command (C)
	IF Command (COBOL)
	IF Command (PL/I)
	IMMEDIATE Command (Full-Screen Mode)
	INPUT Command (C and COBOL)
	LIST Command
	LIST (blank)
	LIST AT
	LIST CALLS
	LIST CURSOR (Full-Screen Mode)
	LIST Expression
	LIST FREQUENCY
	LIST LAST
	LIST LINE NUMBERS
	LIST LINES
	LIST MONITOR
	LIST NAMES
	LIST ON (PL/I)
	LIST PROCEDURES
	LIST REGISTERS
	LIST STATEMENT NUMBERS
	LIST STATEMENTS
	LIST STORAGE

	MONITOR Command
	MOVE Command (COBOL)
	Null Command
	ON Command (PL/I)
	PANEL Command (Full-Screen Mode)
	PERFORM Command (COBOL)
	Prefix Commands (Full-Screen Mode)
	PROCEDURE Command
	QUERY Command
	QUERY Prefix (Full-Screen Mode)

	QUIT Command
	RETRIEVE Command (Full-Screen Mode)
	RUN Command
	SCROLL Command (Full-Screen Mode)
	SELECT Command (PL/I)
	SET Command
	SET CHANGE
	SET COLOR (Full-Screen Mode)
	SET COUNTRY
	SET DBCS
	SET DEFAULT LISTINGS
	SET DEFAULT SCROLL (Full-Screen Mode)
	SET DEFAULT WINDOW (Full-Screen Mode)
	SET ECHO
	SET EQUATE
	SET EXECUTE
	SET FREQUENCY
	SET HISTORY
	SET INTERCEPT (C and COBOL)
	SET KEYS (Full-Screen Mode)
	SET LOG
	SET LOG NUMBERS (Full-Screen Mode)
	SET MONITOR NUMBERS (Full-Screen Mode)
	SET MSGID
	SET NATIONAL LANGUAGE
	SET PACE
	SET PFKEY
	SET PROGRAMMING LANGUAGE
	SET QUALIFY
	SET REFRESH (Full-Screen Mode)
	SET REWRITE
	SET SCREEN (Full-Screen Mode)
	SET SCROLL DISPLAY (Full-Screen Mode)
	SET SOURCE
	SET SUFFIX (Full-Screen Mode)
	SET TEST
	SET WARNING (C and PL/I)

	SET Command (COBOL)
	SHOW Prefix Command (Full-Screen Mode)
	STEP Command
	switch Command (C)
	TRIGGER Command
	USE Command
	while Command (C)
	WINDOW Command (Full-Screen Mode)
	WINDOW CLOSE
	WINDOW OPEN
	WINDOW SIZE
	WINDOW ZOOM

	Part 4. Appendixes
	Appendix A. Coexistence
	Coexistence with Other Debug Tools
	Coexistence with Unsupported HLL Modules

	Appendix B. Using Debug Tool in a Production Mode
	Fine-Tuning Your Programs with Debug Tool
	Removing Hooks, Statement Tables, and Symbol Tables
	Using Debug Tool on Optimized Programs

	Appendix C. Using C Reference Information with Debug Tool
	Debug Tool Interpretive Subset of C Commands
	C Reserved Keywords
	Operators and Operands
	LE/VSE Conditions and Their C Equivalents

	Appendix D. Using COBOL Reference Information with Debug Tool
	Debug Tool Interpretive Subset of COBOL Commands
	COBOL Reserved Keywords
	Allowable Comparisons for the Debug Tool IF Command
	Allowable Moves for the Debug Tool MOVE Command
	Allowable Moves for the Debug Tool SET Command

	Appendix E. Using PL/I Reference Information with Debug Tool
	Debug Tool Interpretive Subset of PL/I Commands
	PL/I Reserved Keywords
	Conditions and Condition Handling
	Unsupported PL/I Language Elements

	Appendix F. Debug Tool Messages
	Bibliography
	Debug Tool Publications
	Language Environment Publications
	LE/VSE-Conforming Language Product Publications
	Related Publications
	Softcopy Publications

	Glossary
	Index

